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Securing Secure Aggregation: Mitigating Multi-Round Privacy Leakage in
Federated Learning

Abstract
Secure aggregation is a critical component in
federated learning (FL), which enables the server
to learn the aggregate model of the users without
observing their local models. Conventionally,
secure aggregation algorithms focus only on
ensuring the privacy of individual users in a
single training round. We contend that such
designs can lead to significant privacy leakages
over multiple training rounds, due to partial user
selection/participation at each round of FL. In
fact, we show that the conventional random user
selection strategies in FL may lead to leaking
users’ individual models within a number of
rounds that is linear in the number of users. To
address this challenge, we introduce a secure
aggregation framework, Multi-RoundSecAgg,
with multi-round privacy guarantees. In particular,
we introduce a new metric to quantify the privacy
guarantees of FL over multiple training rounds,
and develop a structured user selection strategy
that guarantees the long-term privacy of each
user (over any number of training rounds). Our
framework also carefully accounts for the fairness
and the average number of participating users at
each round. Our experiments on MNIST, CIFAR-
10 and CIFAR-100 datasets in the IID and the
non-IID settings demonstrate the performance
improvement over the baselines, both in terms
of privacy protection and test accuracy.

1. Introduction
Federated learning (FL) enables collaborative training of
machine learning models over the data collected and stored
locally by multiple data-owners (users). The training in FL
is typically coordinated by a central server who maintains
a global model that is updated locally by the users. The
local updates are then aggregated by the server to update the
global model. Throughout the training process, the users
never share their data with the server, i.e., the data is always
kept on device, rather, they only share their local updates.
However, as has been shown recently, the local models may
still reveal substantial information about the local datasets,
and the private training data can be reconstructed from the
local models through inference or inversion attacks (see

Figure 1: A qualitative comparison of the reconstructed images
in two settings is shown. The first setting corresponds to the case
that model privacy with random user selection (e.g., FedAvg
(McMahan et al., 2018)) is protected by conventional secure
aggregation schemes as (Bonawitz et al., 2017) at each round.
The second setting corresponds to our proposed method, Multi-
RoundSecAgg, which ensures the long-term privacy of individual
models over any number of rounds, and hence model inversion
attack cannot work well. This reconstruction process is described
in detail in Appendix G.

e.g., (Fredrikson et al., 2015; Nasr et al., 2019; Zhu & Han,
2020; Geiping et al., 2020)).
To prevent such information leakage, secure aggregation
protocols are proposed (e.g., (Bonawitz et al., 2017; So
et al., 2021b; Kadhe et al., 2020; Zhao & Sun, 2021; Bell
et al., 2020; Yang et al., 2021; So et al., 2021a)) to protect
the privacy of the local models, both from the server and
the other users, while still allowing the server to learn
their aggregate. More specifically, the secure aggregation
protocols ensure that, at any given round, the server can only
learn the aggregate model of the users, and beyond that no
further information is revealed about the individual model.

Secure aggregation protocols, however, only ensure the
privacy of the individual users in a single training round, and
do not consider their privacy over multiple training rounds.
On the other hand, due to partial user selection (Cho et al.,
2020b; Chen et al., 2020; Cho et al., 2020a; Ribero & Vikalo,
2020), the server may be able to reconstruct the individual
models of some users using the aggregated models from
the previous rounds. In fact, we show that after a sufficient
number of rounds, all local models can be recovered with
a high accuracy if the server uniformly chooses a random
subset of the users to participate at every round. As shown
in Fig.1, performing model inversion attack (Geiping et al.,
2020) with the recovered local models yields reconstructed
images with a similar quality as the original images.

Contributions. As such motivated, we study long-term user
privacy in FL. Specifically, our contributions are as follows
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1. We introduce a new metric to capture long-term privacy
guarantees in FL for the first time. This long-term privacy
condition requires that the server cannot reconstruct any
individual model using the aggregated models from any
number of training rounds. Using this metric, we show
that the conventional random user selection schemes
can result in leaking the individual user models after a
sufficient number of rounds, even if secure aggregation
is employed at each round.

2. We propose Multi-RoundSecAgg, a privacy-preserving
structured user selection strategy that ensures the long-
term privacy of the individual users over any number of
training rounds. This strategy also takes into account the
fairness of the selection process and the average number
of participating users at each round.

3. We demonstrate that Multi-RoundSecAgg creates a trade-
off between the long-term privacy guarantee and the
average number of participating users. In particular, as
the average number of participating users increases, the
long-term privacy guarantee becomes weaker.

4. We provide the convergence analysis of Multi-
RoundSecAgg, which shows that the long-term privacy
guarantee and the average number of participating users
control the convergence rate. The convergence rate is
maximized when the average number of participating
users is maximized. (e.g., the random user selection
strategy maximizes the average number of participating
users at the expense of not providing long-term privacy
guarantees). As we require stronger long-term privacy
guarantees, the average number of participating users
decreases and a larger number of training rounds is
required to achieve the same level of accuracy as the
random selection strategy.

5. Finally, our experiments in both IID and non-IID
settings on MNIST, CIFAR-10 and CIFAR-100 datasets
demonstrate that Multi-RoundSecAgg achieves almost
the same test accuracy compared to the random
selection scheme while providing better long-term
privacy guarantees.

2. Related Work
The underlying principle of the secure aggregation protocol
in (Bonawitz et al., 2017) is that each pair of users exchange
a pairwise secret key which they can use to mask their local
models before sharing them with the server. The pairwise
masks cancel out when the server aggregates the masked
models, allowing the server to learn the aggregate of the
local models. These masks also ensure that the local models
are kept private, i.e., no further information is revealed
beyond the aggregate of the local models. This protocol,

however, incurs a significant communication cost due to
exchanging and reconstructing the pairwise keys.

Recently, several works have developed computation and
communication-efficient protocols (So et al., 2021b; Kadhe
et al., 2020; Bell et al., 2020; Tang et al., 2021; Choi et al.,
2020; Elkordy & Avestimehr, 2020; Yang et al., 2021),
which are complementary to and can be combined with
our work. Another line of work focused on designing partial
user selection strategies to overcome the communication
bottleneck in FL while speeding up the convergence by
selecting the users based on their local loss (Cho et al.,
2020b; Chen et al., 2020; Cho et al., 2020a; Ribero & Vikalo,
2020).

Previous works, either on secure aggregation or on partial
user selection, however, do not consider mitigating the
potential privacy leakage as a result of partial user
participation and the server observing the aggregated
models across multiple training rounds. While (Pejó &
Biczók, 2020) pointed out to the privacy leakage of secure
aggregation, mitigating this leakage has not been considered
and our work is the first to address this challenge.

3. System Model
In this section, we first describe the basic federated learning
model in Section 3.1. Next, we introduce the multi-round
secure aggregation problem for federated learning and
define the key metrics to evaluate the performance of a
multi-round secure aggregation protocol in Section 3.2.

3.1. Basic Federated Learning Model

We consider a cross-device federated learning setup
consisting of a server and N users. User i ∈ [N ] has a
local dataset Di consisting of mi = |Di| data samples. The
users are connected to each other through the server, i.e., all
communications between the users goes through the server
(McMahan et al., 2017; Bonawitz et al., 2017; Kairouz et al.,
2019). The goal is to collaboratively learn a global model x
with dimension d, using the local datasets that are generated,
stored, and processed locally by the users. The training task
can be represented by minimizing a global loss function,

min
x
L(x) s.t. L(x) =

1∑N
i=1 wi

N∑
i=1

wiLi(x), (1)

whereLi is the loss function of user i andwi ≥ 0 is a weight
parameter assigned to user i to specify the relative impact
of that user. A common choice for the weight parameters
is wi = mi (Kairouz et al., 2019). We define the optimal
model parameters x∗ and x∗i as x∗ = arg minx∈Rd L(x) and
x∗i = arg minx∈Rd Li(x).
Federated Averaging with Partial User Participation.
To solve (1), the most common algorithm is the FedAvg



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Securing Secure Aggregation: Mitigating Multi-Round Privacy Leakage in Federated Learning

(federated averaging) algorithm (McMahan et al., 2017).
FedAvg is an iterative algorithm, where the model training
is done by repeatedly iterating over individual local updates.
At the beginning of training round t, the server sends the
current state of the global model, denoted by x(t), to the
users. Each round consists of two phases, local training
and aggregation. In the local training phase, user i ∈ [N ]
updates the global model by carrying out E (≥ 1) local
stochastic gradient descent (SGD) steps and sends the
updated local model x(t)i to the server. One of key features
of cross-device FL is partial device participation. Due to
various reasons such as unreliable wireless connectivity, or
battery issues, at any given round, only a fraction of the
users are available to participate in the protocol. We refer to
such users as available users throughout the paper. In the
aggregation phase, the server selects K ≤ N users among
the available users if this is possible and aggregates their.
After receiving the local updates, the server updates the
global model as follows

x(t+1) =
∑
i∈S(t)

w′ix
(t)
i = X(t)>p(t), (2)

where S(t) is the set of participating users at round t,
w′i = wi∑

i∈S(t) wi
, and p(t) ∈ {0, 1}N is the corresponding

characteristic vector. That is, p(t) denotes a participation
vector at round t whose i-th entry is 0 when user i is not
selected and 1 otherwise. X(t) denotes the concatenation
of the weighted local models at round t, i.e., X(t) =[
w′1x(t)

1 , . . . , w′Nx(t)N
]> ∈ RN×d. Finally, the server

broadcasts the updated global model x(t+1) to the users
for the next round.
Threat Model. Similar to the prior works on secure
aggregation as (Bonawitz et al., 2017; Kadhe et al., 2020; So
et al., 2021b), we consider the honest-but-curious server’s
model. The server follows the protocol honestly in this
model, but tries to learn as much as possible about the users.
At each round, the privacy of individual model x(t)

i in (2)
is protected by secure aggregation such that the server only
learns the aggregate of the selected models

∑
i∈S(t) w′ix

(t)
i .

3.2. Multi-round Secure Aggregation

Conventional secure aggregation protocols only consider
the privacy guarantees over a single training round.
While secure aggregation protocols have provable privacy
guarantees at any single round, in the sense that no
information is leaked beyond the aggregate model at each
round, the privacy guarantees do not extend to attacks
that span multiple training rounds. Specifically, by using
the aggregate models and participation information across
multiple rounds, an individual model may be reconstructed.
For instance, consider the following user participation
strategy across three training rounds, p(1) = [1, 1, 0]>,

p(2) = [0, 1, 1]>, and p(3) = [1, 0, 1]>. Assume a scenario
where the local updates do not change significantly over
time (e.g., models start to converge, or the server fixes the
global model over consecutive rounds), i.e., xi = x(t)

i for
all i ∈ [3] and t ∈ [3]. Then, the server can single out
individual model, e.g., x1 = (x(1)+x(3)−x(2))/2. Similarly,
the server can single out all individual models xi, even if a
secure aggregation protocol is employed at each round.

In this paper, we study secure aggregation protocols with
long-term privacy guarantees (which we term multi-round
secure aggregation) for the cross-device FL setup which
has not been studied before. We assume that user i ∈
[N ] drops from the protocol at each round with probability
pi. U (t) denotes the index set of available users at round
t and u(t) ∈ {0, 1}N is a vector indicating the available
users such that {u(t)}j = 1{j ∈ U (t)}, where {u}j is j-th
entry of u and 1{·} is the indicator function. The server
selects K users from U (t), if |U (t)| ≥ K, based on the
history of selected users in previous rounds. If |U (t)| <
K, the server skips this round. The local models of the
selected users are then aggregated via a secure aggregation
protocol (i.e., by communicating masked models), at the
end of which the server learns the aggregate of the local
models of the selected users. Our goal is to design a user
selection algorithmA(t) : {0, 1}t×N×{0, 1}N → {0, 1}N ,

A(t)
(
P(t),u(t)

)
= p(t) such that ‖p(t)‖0 ∈ {0,K}, (3)

to prevent the potential information leakage over multiple
rounds, where p(t) ∈ {0, 1}N is the participation vector
defined in (2), ‖x‖0 denotes the L0-“norm” of a vector x
and K denotes the maximum number of selected users. We
note that A(t) can be a random function. P(t) is a matrix
representing the user participation information up to round
t, and is termed the participation matrix, given by

P(t) =
[
p(0),p(1), . . . ,p(t−1)]> ∈ {0, 1}t×N . (4)

Key Metrics. A multi-round secure aggregation protocol
can be represented by A = {A(t)}t∈[J], where A(t) is the
user selection algorithm at round t defined in (3) and J is
the total number of rounds. The inputs ofA(t) are a random
vector u(t), which indicates the available users at round t,
and the participation matrix P(t) defined in (4) which can be
a random matrix. Given the participation matrix P(J), we
evaluate the performance of the corresponding multi-round
secure aggregation protocol through the following metrics.

1. Multi-round Privacy Guarantee. The secure
aggregation protocols ensure that the server can only
learn the sum of the local models of some users in each
single round, but they do not consider what the server
can learn over the long run.
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Our multi-round privacy definition extends the
guarantees of the secure aggregation protocols from
one round to all training rounds by requiring that
the server can only learn a sum of the local models
even if the server exploits the aggregate models of all
rounds. That is, our multi-round privacy guarantee is a
natural extension of the privacy guarantee provided by
the secure aggregation protocols considering a single
training round.

Specifically, a multi-round privacy guarantee T requires
that any non-zero partial sum of the local models that the
server can reconstruct, through any linear combination
X>P(J)>z, where z ∈ RJ \ {0}, must be of the form1

X>P(J)>z =
∑
i∈[n]

ai
∑
j∈Si

xj

= a1
∑
j∈S1

xj + a2
∑
j∈S2

xj + · · ·+ an
∑
j∈Sn

xj , (5)

where |Si| ≥ T, ai 6= 0,∀i ∈ [n] and n ∈ Z+. Here all
the sets Si, the number of sets n, and each ai could all
depend on z. In equation (5), we consider the worst-case
scenario, where the local models do not change over the
rounds. That is, X(t) = X, ∀t ∈ [J ]. Intuitively, this
guarantee ensures that the best that the server can do
is to reconstruct a partial sum of T local models which
corresponds to the case where n = 1. When T ≥ 2,
this condition implies that the server cannot get any user
model from the aggregate models of all training rounds
(the best it can obtain is the sum of two local models).

Remark 1. (Weaker Privacy Notion). It is worth
noting that, a weaker privacy notion would require that
‖P(J)>z‖0 ≥ T when P(J)>z 6= 0. When T = 2, this
definition requires that the server cannot reconstruct any
individual model (the best it can do is to obtain a linear
combination of two local models). This notion, however,
allows constructions in the form of axi + bxj for any
a, b ∈ R \ {0}. When a � b, however, this is almost
the same as recovering xi perfectly, hence this privacy
criterion is weaker than that of (5).

Remark 2. (Multi-round Privacy of Random Selection).
In Section 6, we empirically show that a random
selection strategy in whichK available users are selected
uniformly at random at each round does not ensure multi-
round privacy even with respect to the weaker definition
of Remark 1. Specifically, the local models can be
reconstructed within a number of rounds that is linear
in N . We also show theoretically in Appendix G that
when min(N −K,K) ≥ cN , where c > 0 is a constant,
then the probability that the server can reconstruct all
local models after N rounds is at least 1 − 2e−c

′N for
1We assume that wi =

1
N
, ∀i ∈ [N ] in this paper.

a constant c′ that depends on c. Finally, we show that a
random selection scheme in which the users are selected
in an i.i.d fashion according to Bern( K

N(1−p) ) reveals
all local models after N rounds with probability that
converges to 1 exponentially fast.

Remark 3. (Worst-Case Assumption). In (5), we
considered the worst-case assumption where the models
do not change over time. When the local models change
over rounds, the multi-round privacy guarantee becomes
even stronger as the number of unknowns increases.

2. Aggregation Fairness Gap. The average aggregation
fairness gap quantifies the largest gap between any two
users in terms of the expected relative number of rounds
each user has participated in training. Formally, the
average aggregation fairness gap is defined as follows

F = max
i∈[N ]

lim sup
J→∞

1

J
E
[ J−1∑
t=0

1
{
{p(t)}i = 1

}]
−

min
i∈[N ]

lim inf
J→∞

1

J
E
[ J−1∑
t=0

1
{
{p(t)}i = 1

}]
, (6)

where {p(t)}i is i-th entry of the vector p(t) and
the expectation is over the randomness of the user
selection algorithm A and the user availability. The
main intuition behind this definition is that when F = 0,
all users participate on average on the same number of
rounds. This is important to take the different users into
consideration equally and our experiments show that the
accuracy of the schemes with small F are much higher
than the schemes with high F .

3. Average Aggregation Cardinality. The aggregation
cardinality quantifies the expected number of models
to be aggregated per round. Formally, it is defined as

C = lim inf
J→∞

E
[∑J−1

t=0 ‖p(t)‖0
]

J
, (7)

where the expectation is over the randomness in A and
the user availability. Intuitively, less number of rounds
are needed to converge as more users participate in the
training. In fact, as we show in Section 5.2, C directly
controls the convergence rate.

3.3. Baseline Schemes

In this subsection, we introduce three baseline schemes for
multi-round secure aggregation.
Random Selection. In this scheme, at each round, the
server selects K users at random from the set of available
users if this is possible.
Random Weighted Selection. This scheme is a modified
version of random selection to reduce F when the dropout
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probabilities of the users are not equal. Specifically, K
users are selected at random from the available users with
the minimum frequency of participation in the previous
rounds. If less than K users are available, the server skips
this round.
User Partitioning (Grouping). In this scheme, the users
are partitioned into G = N/K equal-sized groups denoted
as G1,G2, · · · ,GG. At each round, the server selects one of
the groups if none of the users in this group has dropped out.
If multiple groups are available, to reduce the aggregation
fairness gap, the server selects a group including a user with
the minimum frequency of participation in previous rounds.
If no group is available, the server skips this round.

4. Proposed Scheme: Multi-RoundSecAgg
In this section, we present Multi-RoundSecAgg, which has
two components as follows.

• The first component designs a family of sets of users that
satisfy the multi-round privacy requirement. The inputs
of the first component are the number of users (N ), the
desired number of selected at each round (K), and the
desired multi-round privacy guarantee (T ). The output is
a family of sets of K users satisfying the multi-round
privacy guarantee T , termed as a privacy-preserving
family. This family is represented by a matrix B, where
the rows are the characteristic vectors of these user sets.

• The second component selects a set from this designed
family to satisfy the fairness guarantee. The inputs to
the second component are the privacy-preserving family
B, the set of available users at round t, U (t), and the
frequency of participation of each user. The output is the
set of users that will participate at round t.

We now describe these two components in detail.

Component 1 (Batch Partitioning (BP) of the users to
guarantee multi-round privacy). The first component
designs a family of RBP sets, where RBP is given in (8),
satisfying the multi-round privacy requirement T . We
denote the RBP ×N binary matrix corresponding to these
sets by B = [b1, · · · , bRBP ]

>, where ‖bi‖0 = K, ∀i ∈
[RBP]. That is, the rows of B are the characteristic vectors
of those sets. The main idea of our scheme is to restrict
certain sets of users of size T , denoted as batches, to either
participate together or not participate at all. This guarantees
a multi-round privacy T as we show in Section 5.

To construct a family of sets with this property, the users
are first partitioned into N/T batches. At any given
round, either all or none of the users of a particular batch
participate in training. The server can choose K/T batches
to participate in training, provided that all users in any

given selected batch are available. Since there are
(
N/T
K/T

)
possible sets with this property, then the size of this privacy-
preserving family of sets is given by2

RBP
def
=

(
N/T

K/T

)
. (8)

In the extreme case of T = 1, this strategy specializes to
random selection where the server can choose any set from
the

(
N
K

)
possible sets of K users. In the other extreme

case of T = K, this strategy specializes to the partitioning
strategy where there are N/K possible sets. We next
provide an example to illustrate the construction of B.
Example 1 (N = 8,K = 4, T = 2). In this example, the
users are partitioned into 4 batches as G1 = {1, 2},G2 =
{3, 4},G3 = {5, 6} and G4 = {7, 8} as given in (9). The
server can choose any two batches out of these 4 batches,
hence we have RBP =

(
4
2

)
= 6 possible sets. This ensures a

multi-round privacy T = 2.

B =


1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 0 0 0 1 1
0 0 1 1 1 1 0 0
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

 . (9)

Component 2 (Available batch selection to guarantee
fairness). At round t, user i ∈ [N ] is available to participate
in the protocol with a probability 1 − pi ∈ (0, 1]. The
frequency of participation of user i before round t is
denoted by f (t)i

def
=
∑t−1
j=0 1

{
{p(j)}i = 1

}
. Given the set

of available users at round t, U (t), and the frequencies of
participation f (t−1) = (f

(t−1)
1 , · · · , f (t−1)N )>, the server

selects K users.
To do so, the server first finds the submatrix of B denoted
by B(t) corresponding to the set of available users at round
t, U (t). Specifically, the i-th row of B denoted by b>i is
included in B(t) provided that supp(bi) ⊆ U (t). If B(t) is
an empty matrix, then the server skips this round. Otherwise,
the server selects a row from B(t) uniformly at random
if pi = p,∀i ∈ [N ]. If the users have different dropout
probabilities, the server selects a row from B(t) that includes
the user with the minimum frequency of participation
`
(t−1)
min

def
= arg mini∈U(t) f

(t−1)
i . If there are many such rows,

then the server selects one of them uniformly at random.
Remark 4. (Necessity of the Second Component). The
second component is necessary to guarantee that the
aggregation fairness gap goes to zero as we show in
Theorem 1 and Section 6.

Overall, the algorithm first designs a privacy-preserving
family of sets of K users such that any set can be selected

2We assume for simplicity that N/T and K/T are integers.
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Figure 2: An illustration of the trade-off between the multi-round
privacy guarantee T and the average aggregation cardinality C. In
this example, N = 120 and K = 12.

at any given round while ensuring the multi-round privacy
guarantee T . Then a specific set is selected from this family
at each round to ensure fairness.
We describe the two components of Multi-RoundSecAgg in
detail in Algorithm 1 and Algorithm 2 in Appendix D.

5. Theoretical Results
In this section, we provide the theoretical guarantees of
Multi-RoundSecAgg in Section 5.1 and the convergence
analysis of Multi-RoundSecAgg in Section 5.2.

5.1. Theoretical Guarantees of Multi-RoundSecAgg

In this subsection, we establish the theoretical guarantees
of Multi-RoundSecAgg in terms of the multi-round privacy
guarantee, the aggregation fairness gap and the average
aggregation cardinality.
Theorem 1. Multi-RoundSecAgg with parameters N,K, T
ensures a multi-round privacy guarantee of T , an
aggregation fairness gap F = 0, and an average
aggregation cardinality given by

C = K

1−
N/T∑

i=N/T−K/T+1

(
N/T

i

)
qi(1− q)N/T−i

,
where q = 1 − (1 − p)T , when all users have the same
dropout probability p.

We provide the proof of Theorem 1 in Appendix A.
Remark 5. (Trade-off between “Multi-round Privacy
Guarantee” and “Average Aggregation Cardinality”).
Theorem 1 indicates a trade-off between the multi-round
privacy and the average aggregation cardinality since as T
increases, C decreases which slows down the convergence
as we show in Sec. 5.2. We show this trade-off in Fig. 2.
Remark 6. (Necessity of Batch Partitioning (BP)). We
show that any strategy that satisfies the privacy guarantee
in Equation (5) must have a batch partitioning structure,
and for given N,K, T,K ≤ N/2, the largest number of
distinct user sets in any strategy is at most

(
N/T
K/T

)
, which is

achieved in our design in Section 4. We provide the proof
in Appendix C.

Remark 7. (Non-linear Reconstructions of Aggregated
Models). The privacy criterion in Equation (5) considers
linear reconstructions of the aggregated models. One may
also consider more general non-linear reconstructions. The
long-term privacy guarantees of batch partitioning hold
even under such reconstructions as the users in the same
batch always participate together or do not participate at all.
Hence, the server cannot separate individual models within
the same batch even through non-linear operations.

5.2. Convergence Analysis of Multi-RoundSecAgg

We now provide the convergence guarantees of Multi-
RoundSecAgg by first introducing a few common
assumptions (Li et al., 2019; Yu et al., 2019).

Assumption 1. L1, . . . , LN in (1) are all ρ-smooth: for all
a, b ∈ Rd and i ∈ [N ], Li(a) ≤ Li(b)+(a−b)>∇Li(b)+
ρ
2‖a− b‖2.

Assumption 2. L1, . . . , LN in (1) are all µ-strongly convex:
for all a, b ∈ Rd and i ∈ [N ], Li(a) ≥ Li(b) + (a −
b)>∇Li(b) + µ

2 ‖a− b‖2.

Assumption 3. Let ξ(t)i be a sample uniformly selected
from the local dataset Di. The variance of the stochastic
gradients at each user is bounded, i.e., E‖∇Li(x(t)

i , ξ
(t)
i )−

∇Li(x(t)i )‖2 ≤ σ2
i for i ∈ [N ].

Assumption 4. The expected squared norm of the
stochastic gradients is uniformly bounded, i.e.,
E‖∇Li(x(t)i , ξ

(t)
i )‖2 ≤ G2 for all i ∈ [N ].

We now state the convergence guarantees.

Theorem 2. Consider a FL setup with N users to train
a machine learning model from (1). Assume K users are
selected by Multi-RoundSecAgg with average aggregation
cardinality C defined in (7) to update the global model from
(2), and all users have the same dropout rate, hence Multi-
RoundSecAgg selects a random set of K users uniformly
from the set of available user sets at each round. Then, the
following is satisfied

E[L(x(J))]− L∗ ≤ (10)

ρ

γ + C
KEJ − 1

(
2(α+ β)

µ2
+
γ

2
E‖x(0) − x∗‖2

)
,

where α = 1
N

∑N
i=1 σ

2
i + 6ρΓ + 8(E − 1)2G2, β =

4(N−K)E2G2

K(N−1) , Γ = L∗−
∑N
i=1 L

∗
i , and γ = max

{
8ρ
µ , E

}
.

We provide the proof of Theorem 2 in Appendix B.
Remark 8. (The average aggregation cardinality controls
the convergence rate.) Theorem 2 shows how the average
aggregation cardinality affects the convergence. When the
average aggregation cardinality is maximized, i.e., C = K,
the convergence rate in Theorem 2 equals that of the random
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selection algorithm provided in Theorem 3 of (Li et al.,
2019). In (10), we have the additional term E (number
of local epochs) in front of J compared to Theorem 3 of
(Li et al., 2019) as we use global round index t instead of
using step index of local SGD. As the average aggregation
cardinality decreases, a greater number of training rounds is
required to achieve the same level of accuracy.
Remark 9. (General Convex and Non-Convex Convergence
Rates). Theorem 2 considers the strongly-convex case, but
we consider the general convex and the non-convex cases in
Appendix H.
Remark 10. (Different Dropout Rates). When the dropout
probabilities of the users are not the same, characterizing
the theoretical and convergence guarantees of Multi-
RoundSecAgg is challenging. This is due to the fact that
batch selection based on the frequency of participation
breaks the conditional unbiasedness of the user selection,
which is required for the convergence guarantee.

6. Experiments
Our experiments consist of two parts. We first numerically
demonstrate the performance of Multi-RoundSecAgg
compared to the baselines of Section 3.3 in terms of the key
metrics of Section 3.2. Next, we implement convolutional
neural networks (CNNs) for image classification with
MNIST (LeCun et al., 2010), CIFAR-10, and CIFAR-
100 (Krizhevsky & Hinton, 2009) to investigate how the
key metrics affect the test accuracy.

Setup. We consider a FL setting withN = 120 users, where
the server aims to choose K = 12 users at every round. We
study two settings for partitioning the CIFAR-100 dataset
across the users.
• IID Setting. The 50000 training samples are shuffled and

partitioned uniformly across the N = 120 users.

• Non-IID Setting. We distribute the dataset using a
Dirichlet distribution (Hsu et al., 2019), which samples
dc ∼ Dir(β = 0.5) which specifying the prior class
distribution over 100 classes, and allocate a portion dc,i
of the class c to user i. The parameter β controls the
heterogeneity of the distributions at each user, where
β →∞ results in IID setting.

We implement a VGG-11 (Simonyan & Zisserman, 2014),
which is sufficient for our needs, as our goal is to evaluate
various schemes, not to achieve the best accuracy. The
hyperparameters are provided in Appendix F.

Modeling dropouts. At each round, user i ∈ [N ] drops
from the protocol with probability pi. pi is selected from
{0.1, 0.2, 0.3, 0.4, 0.5} uniformly at random.

Implemented Schemes. For the benchmarks, we
implement the three baselines introduced in Sec. 3.3,

referred to as Random, Weighted Random, and Partition. For
Multi-RoundSecAgg, we construct three privacy-preserving
families of sets with different target multi-round privacy
guarantees, T = 6, T = 4, and T = 3 which we refer
to as Multi-RoundSecAgg (T = 6), Multi-RoundSecAgg
(T = 4), and Multi-RoundSecAgg (T = 3), respectively.
One can view the Random and Partition as extreme cases of
Multi-RoundSecAgg with T = 1 and T = K, respectively.
Table 1 summarizes the family size R defined in (8).

Scheme Family size (= R)

Random selection ∼ 1016

Weighted random selection ∼ 1016

User partition 10
Multi-RoundSecAgg, T=6 190
Multi-RoundSecAgg, T=4 4060
Multi-RoundSecAgg, T=3 91389

Table 1: Family size with N = 120, K = 12.

Key Metrics. To numerically demonstrate the performance
of the six schemes in terms of the key metrics defined in
Sec. 3.2, at each round, we measure the following metrics.

• For the multi-round privacy guarantee, we measure
the number of models in the partial sum that the
server can reconstruct, which is given by T (t) :=

minz∈RJ} ‖z>P(t)‖0, s.t. P(t)>z 6= 0. This corresponds
to the weaker privacy definition of Remark 1. We use
this weaker privacy definition as the random selection
and the random weighted selection strategies provide
the worst privacy guarantee even with this weaker
definition, as demonstrated later. On the other hand, Multi-
RoundSecAgg provides better privacy guarantees with
both the strong and the weaker definitions.

• For the aggregation fairness gap, we measure the
instantaneous fairness gap, F (t) := maxi∈[N ] F

(t)
i −

mini∈[N ] F
(t)
i where F (t)

i = 1
t+1

∑t
l=0 1

{
{p(l)}i = 1

}
.

• We measure the instantaneous aggregation cardinality as
C(t) := 1

t+1

∑t
l=0 ‖p(l)‖0.

We demonstrate these key metrics in Figure 3. We make the
following key observations.

• Multi-RoundSecAgg achieves better multi-round privacy
guarantee than both the random selection and random
weighted selection strategies, while user partitioning
achieves the best multi-round privacy guarantee, T =
K = 12. However, the partitioning strategy has the
worst aggregation cardinality, which results in the lowest
convergence rate as demonstrated later.

• Figure 4 demonstrates the trade-off between the multi-
round privacy guarantee T and the average aggregation
cardinality C. Interestingly, Multi-RoundSecAgg when
T = 3 or T = 4 achieves better multi-round privacy
guarantee than both the random selection and the
weighted random selection strategies while achieving
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Figure 3: The key metrics with N = 120 (number of users), K = 12 (number of selected users at each round).
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Figure 4: Trade-off between multi-
round privacy and average aggregation
cardinality with N = 120, K = 12.

(a) IID data distribution. (b) Non-IID data distribution.

Figure 5: Training rounds versus test accuracy of VGG11 in (Simonyan & Zisserman,
2014) on the CIFAR-100 with N = 120 and K = 12.

almost the same average aggregation cardinality.

Remark 11. (Multi-round Privacy of Random and Weighted
Random). The multi-round privacy guarantees of Random
and Weighted Random drop sharply as shown in Fig. 3(a)
as the participating matrix P(t) ∈ {0, 1}t×N becomes
full column rank with high probability when t ≥ N , and
hence the server can reconstruct the individual models by
utilizing a pseudo inversion of the matrix P(t). More
precisely, Theorem 3 in Appendix G shows this thresholding
phenomenon, where the probability that the server can
reconstruct individual models after certain number of rounds
converges to 1 exponentially fast.

Key Metrics versus Test Accuracy. To investigate how
the key metrics affect the test accuracy, we measure the test
accuracy of the six schemes in the two settings, the IID and
the non-IID settings. Our results are demonstrated in Figure
5. We make the following key observations.
• In the IID setting, the Multi-RoundSecAgg schemes

show test accuracies that are comparable to the random
selection and random weighted selection schemes while
the Multi-RoundSecAgg schemes provide higher levels
of privacy. Specifically, the Multi-RoundSecAgg schemes
achieve T = 3, 4, 6 based on the privacy-preserving
family design while the random selection and random
weighted selection schemes have T = 1, i.e., the server
can learn an individual local model.

• In the non-IID setting, Multi-RoundSecAgg not
only outperforms the random selection scheme but

also achieves a smaller aggregation fairness gap as
demonstrated in Fig. 3(b).

• In both IID and non-IID settings, the user partitioning
scheme has the worst test accuracy as its average
aggregation cardinality is much smaller than the other
schemes as demonstrated in Fig. 3(c).

We also implement additional experiments on MNIST and
CIFAR-10 datasets in Appendix E.

7. Conclusion
Partial user participation may breach user privacy in
federated learning, even if secure aggregation is employed
at every training round. To address this challenge, we
introduced the notion of long-term privacy, which ensures
that the privacy of individual models are protected over
all training rounds. We developed Multi-RoundSecAgg,
a structured user selection strategy that guarantees long-
term privacy while taking into account the fairness in
user selection and average number of participating users,
and showed that Multi-RoundSecAgg provides a trade-
off between long-term privacy and average number of
participating users (hence the convergence rate). Our
experiments on the CIFAR-100, CIFAR-10, and MNIST
datasets on both the IID and non-IID settings show that
Multi-RoundSecAgg achieves comparable accuracy to the
random selection strategy (which does not ensure long-term
privacy), while ensuring long-term privacy guarantees.
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Organization. These appendices are organized as follows.

(A) In Appendix A, we prove Theorem 1.

(B) In Appendix B, we prove Theorem 2.

(C) In Appendix C, we show that batch partitioning is necessary to satisfy the multi-round privacy definition given in (5).

(D) In Appendix D, we provide the two components of Multi-RoundSecAgg which are Algorithm 1 and Algorithm 2.

(E) Appendix E provides additional experiments on the MNIST dataset.

(F) Appendix F provides additional details and the hyperparameters of the experiments of Section 6 and Appendix E.

(G) In Appendix G, we theoretically show that the random selection strategy discussed in Remark 2 that aims to select
K available users at each round and the random selection strategy that selects the users in i.i.d fashion both have
a multi-round privacy T = 1 with high probability. We also empirically demonstrate that the local models can be
reconstructed accurately when random selection is used.

(H) Finally, in Appendix H, we consider the convergence rate of the general convex and the non-convex cases.

A. Theoretical Guarantees of Multi-RoundSecAgg: Proof of Theorem 1
In this appendix, we provide the proof of Theorem 1.

Proof. 1. First, we prove that Multi-RoundSecAgg ensures a multi-round privacy of T . We first partition the matrix B into
R×T matrices as B = [B(1),B(2), · · · ,B(N/T )] and the aggregated models as X = [X(1)>,X(2)>, · · · ,X(N/T )>]>.
We can then express any linear combination of the aggregated models X>B>z, where z ∈ RR \ {0}, as follows

X>B>z =

N/T∑
i=1

X(i)>B(i)>z. (11)

Denote the j-th column of B(i) by b
(i)
j which is either a zero vector or all ones vector due to the batch partitioning

structure. That is, b
(i)
j ∈ {0,1}. Hence, B(i)>z ∈ {0, ai.1} for some ai ∈ R \ {0}. Therefore, we have

X(i)>B(i)>z =


0 B(i)>z = 0,

ai
iT∑

j=(i−1)T+1

xj otherwise,
(12)

∀i ∈ [N/T ], which shows that Multi-RoundSecAgg achieves a multi-round privacy T .

2. Next, we prove that Multi-RoundSecAgg has an aggregation fairness gap F = 0.

It is clear that the total number of times user i is being selected up to time J is the same as that of user j who lies in the
same batch as user i. This follows since all users in the same batch either participate together or they do not participate
at all.

It suffices to show that the expected number of selections of user i up to time J is the same as that of user j, where user i
and user j are in different batches. The main observation is that our protocol is symmetric. Indeed, the only randomness
in the system are the user availability randomness and the set selection randomness when there are multiple user sets
satisfying the requirements. We note that for any realization of random variables such that the batch of user i is selected
at time t, there is a corresponding realization of random variables such that the batch of user j is selected at time t and
all other selections remain exactly the same. Hence, Fi = Fj for any i 6= j.
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3. Finally, we characterize the average aggregation cardinality of Multi-RoundSecAgg. The average aggregation cardinality
can be expressed as follows

C = K (1− Pr[No row of B is available])

= K

(
1− Pr[At least

N

T
− K

T
+ 1 batches are not available]

)

= K

1−
N/T∑

i=N/T−K/T+1

(
N/T

i

)
qi(1− q)N/T−i

 , (13)

where q is the probability that a certain batch is not available, which is given by q = 1− (1− p)T .

B. Convergence Analysis of Multi-RoundSecAgg : Proof of Theorem 2
The proof of Theorem 2 is divided into two parts. In the first part, we introduce a new sequence to represent the local
updates in each user with respect to step index while we use the global round index t for x(t) in (2). We carefully define the
sequence and the step index, and then provide the convergence analysis of the sequence. In the second part, we bridge the
newly defined sequence and x(t) in (2), and provide convergence analysis of x(t).

First Part (Convergence analysis of local model updates).

Let w(j)
i be the local model updated by user i at the j-th step. Note that this step index is different from the global round

index t in (2) as each user updates the local model by carrying out E(≥ 1) local SGD steps before sending the results to
the server. Let IE be the set of global synchronization steps, i.e., IE = {nE|n = 0, 1, 2, . . .}. Importantly, we define the
step index j such it increases from nE to nE + 1 only when the server does not skip the selection, i.e., there are at least K
available users at step nE + 1 for n ∈ {0, 1, 2, . . .}. We denote by HnE the set selected by Multi-RoundSecAgg at step
index nE and from the definition, |HnE | = K for all n ∈ {0, 1, 2, . . .}. Then, the update equation can be described as

vj+1
i = wj

i − η
j∇Li

(
wj
i , ξ

j
i

)
, (14)

wj+1
i =

{
vj+1
i if j + 1 ∈ IE
1
K

∑
k∈Hj+1

vj+1
k if j + 1 /∈ IE

, (15)

where we introduce an additional variable vj+1
i to represent the immediate result of one step SGD from wj

i . We can view
wj+1
i as the model obtained after aggregation step (when j + 1 is a global synchronization step). Motivated by (Stich, 2018;

Li et al., 2019), we define two virtual sequences

vj =
1

N

N∑
i=1

vji , (16)

wj =
1

N

N∑
i=1

wj
i . (17)

We can interpret vj+1 as the result of single step SGD from wj . When j /∈ IE , both vj and wj are not accessible. We also
define gj = 1

N

∑N
i=1∇Li

(
wj
i

)
and gj = 1

N

∑N
i=1∇Li

(
wj
i , ξ

j
i

)
. Then, vj+1 = wj − ηjgj .

Now, we state our two key lemmas.

Lemma 1 (Unbiased selection). When j + 1 ∈ IE , the following is satisfied,

EHj+1 [wj+1] = vj+1. (18)
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Proof. LetHj+1 = {i1, . . . , iK}. Then, we have

EHj+1
[wj+1] =

1

K
EHj+1

 ∑
k∈Hj+1

vj+1
k

 =
1

K
EHj+1

[
K∑
k=1

vj+1
ik

]
= EHj+1

[vj+1
ik

]

=

N∑
k=1

1

N
vj+1
k = vj+1 (19)

where (19) follows as Pr[ik = j] = 1
N for i ∈ [N ]. This is because the sampling probability of each user is identical due to

the symmetry in the construction and the fact that all users have the same dropout probability.

Now, we provide the convergence analysis of the sequence wj defined in (17). We have,

‖wj+1 −w∗‖2 = ‖wj+1 − vj+1 + vj+1 −w∗‖2

= ‖wj+1 − vj+1‖2 + ‖vj+1 −w∗‖2 + 2
(
wj+1 − vj+1

)> (
vj+1 −w∗

)
. (20)

When the expectation is taken overHj+1, the last term in (20) becomes zero due to Lemma 1. For the second term in (20),
we have

‖vj+1 −w∗‖2 ≤ (1− ηjµ)‖wj −w∗‖2 + α(ηj)2, (21)

where α = 1
N

∑N
i=1 σ

2
i + 6ρΓ + 8(E − 1)2G2 and (21) directly follows from Lemma 1, 2, 3 of (Li et al., 2019). The first

term in (20) becomes zero if j + 1 ∈ IE , and if j + 1 /∈ IE , from Lemma 5 of (Li et al., 2019), it is bounded by

EHj+1‖wj+1 − vj+1‖2 ≤ β(ηj)2, (22)

where β = 4(N−K)E2G2

K(N−1) . By combining (20) to (22), we have

E‖wj+1 −w∗‖2 ≤ (1− ηjµ)‖wj −w∗‖2 + (α+ β)(ηj)2. (23)

Then by utilizing the similar induction in (Li et al., 2019), we can show that

E‖wj+1 −w∗‖2 ≤ 1

γ + t− 1

(
4(α+ β)

µ2
+ γE‖w0 −w∗‖2

)
, (24)

where γ = max
{

8ρ
µ , E

}
. By combining (24) with ρ-smoothness of the global loss function in (1), we have

E[L(wI)]− L∗ ≤ ρ

γ + I − 1

(
2(α+ β)

µ2
+
γ

2
E‖w0 − x∗‖2

)
. (25)

Second Part (Convergence analysis of global model).

Now, we bridge the sequence wT and x(t) in (2) to provide the convergence analysis of x(t). Since we define the step index
j such that j increases from nE to nE + 1 only when the server does not skip the selection, we have

E[L(x(J))] = E[L(w(JEφ))] (26)

where φ is the probability that there are at least K available users at a certain synchronization step, and φ = C
K due to the

fact that C = K · Pr[at least one row of B is available] = Kφ. By combining (25) and (26), we have that,

E[L(x(J))]− L∗ ≤ ρ

γ + C
KEJ − 1

(
2(α+ β)

µ2
+
γ

2
E‖x(0) − x∗‖2

)
, (27)

which completes the proof.
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C. Necessity of Batch Partitioning (BP)
In this appendix, we show that batch partitioning is necessary to satisfy the multi-round privacy guarantee of Equation (5)
and our strategy is optimal in the sense that no other strategy can have more distinct user selection sets than our strategy.

Proof. Consider any scheme which selects sets from an R×N matrix V = [v1, · · · ,vN ]>. Denote the linear coefficients
multiplying them by zi, i ∈ [R]. Then, the i-th element of V>z is given by

{V>z}i =
∑

j∈supp(vi)

zi. (28)

We now claim that we can cluster the entries using equivalence of linear functions to groups, where each group must have a
size of at least T except for the group corresponding to the zero function. To show this, we choose each zi

i.i.d.∼ U [0, 1], and
the key observation is that if two entries have different linear functions then their final value after this assignment would be
different with probability one. Since the scheme satisfies a multi-round privacy T , this implies that for each non-zero linear
function of the form of Equation (28), there must be at least T of them. If we group the entries according to the equivalence
of linear functions, we get at most N/T groups (ignoring the group of constant zero).

Then, we show that the total number of possible sets R is upper-bounded by
(
N/T
K/T

)
. We observe that the total number of

non-zero groups we can choose for each vector is at most K/T due to the size of each group, so the total number of distinct
vectors satisfying the weight requirement is at most

R ≤ Rmax
def
=

(
D

E

)
, (29)

where D ≤ N/T is the total number of groups corresponding to the non-zero linear functions, and E ≤ K/T is the total
number of groups we may select in each round. Next, we have

Rmax =

(
D

E

)
(i)

≤
(
N/T

E

)
(ii)

≤
(
N/T

K/T

)
= RBP, (30)

where (i) follows since
(
D
E

)
is monotonically increasing w.r.t D, and (ii) follows as

(
D
E

)
is monotonically increasing w.r.t E

if E ≤ D/2.

D. The Two Components of Multi-RoundSecAgg : Algorithms 1 and 2

Algorithm 1 Batch Partitioning Privacy-preserving Family Generation
Input: Number of users N , row weight K and the desired multi-round privacy guarantee T .
Output: Privacy-preserving Family B ∈ {0, 1}RBP×N , where RBP =

(
N/T
K/T

)
Initialization: B = 0RBP×N .

1: Partition index sets {1, 2, . . . , N} into N
T sets, G1, . . . ,GN

T
, where |Gi| = T for all i ∈ [NT ].

2: Generate all possible sets each of which is union of KT sets out of NT sets (G1, . . . ,GN
T

) without replacement. Denote
the generated sets by L1, . . . ,LRBP .

3: for i = 1, 2, . . . , RBP do
4: for j = 1, 2, . . . , N do
5: if j ∈ Li then {bi}j = 1
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Algorithm 2 Available Batch Selection

Input: A family of sets B, set of available users U (t), the frequency of participation vector f (t−1), and the selection mode λ.
. λ = 0 when pi = p,∀i ∈ [N ] and 1 otherwise
Output: A participation vector p(t).
Initialization: B(t) = [ ], `

(t−1)
min := arg mini∈U(t) f

(t−1)
i .

1: for i = 1, 2, . . . , RBP do
2: if supp(bi) ⊆ U (t) then B(t) = [B(t)>, bi]>.
3: if B(t) = [ ] then
4: b(t)

r(t) = 0.
5: else if λ = 0 then . Uniform selection
6: Select a row from B(t), b(t)

r(t), uniformly at random.
7: else . Fairness-aware selection
8: Select a row from B(t), b(t)

r(t), uniformly at random from the rows that include `(t−1)min .

9: p(t) = b(t)
r(t).

10: Update f (t) = f (t−1) + p(t)

E. Additional Experiments
MNIST. To further investigate the performance of Multi-RoundSecAgg, we implement a simple CNN (McMahan et al.,
2017) with two 5× 5 convolution layers, a fully connected layer with ReLU activation, and a final Softmax output layer.
This standard model has 1,663,370 parameters and is sufficient for our needs, as our goal is to evaluate various schemes, not
to achieve the best accuracy. We study the two settings for partitioning the MNIST dataset across the users.

• IID Setting. In this setting, the 60000 training samples are shuffled and partitioned uniformly across the N = 120
users, where each user receives 500 samples.

• Non-IID Setting. In this setting, we first sort the dataset by the digit labels, partition the sorted dataset into 120 shards
of size 500, and assign each of the 120 users one shard. This is similar to the pathological non-IID partitioning setup
proposed in (McMahan et al., 2017), where our partition is an extreme case as each user has only one digit label while
each user in (McMahan et al., 2017) has two.

0 25 50 75 100 125 150 175 200
# Rounds

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

Te
st
 A
cc
ur
ac
y 

(%
)

Random
Weighted Random
Partition
Multi-RoundSecAgg, T=6
Multi-RoundSecAgg, T=4
Multi-RoundSecAgg, T=3

(a) IID data distribution. (b) Non-IID data distribution.

Figure 6: Training rounds versus test accuracy of CNN in (McMahan et al., 2017) on the MNIST with N = 120 and K = 12.

CIFAR-10 We also consider both IID and Non-IID distribution, and implement LeNet (LeCun et al., 1999) for both setting.
While the state-of-the-art models (Kolesnikov et al., 2020; Tan & Le, 2019) achieve 99% accuracy, LeNet is sufficient for
our needs, as our goal is to evaluate various schemes, not to achieve the best accuracy.

• IID Setting. In this setting, the 50000 training samples are shuffled and partitioned uniformly across the N = 120 users,
where each user receives 417 or 416 samples.
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Table 2: Test accuracy of VGG11 in (Simonyan & Zisserman, 2014) on the CIFAR-100 dataset with N = 120 and K = 12.

Scheme IID Setting Non-IID Setting

Random selection 49.15% 44.32%
Weighted random selection 50.06% 47.11%

User partition 25.73% 22.32%
Multi-RoundSecAgg, T=6 42.89% 39.57%
Multi-RoundSecAgg, T=4 49.43% 46.99%
Multi-RoundSecAgg, T=3 50.22% 47.06%

• Non-IID dataset. In this setting, we utilize the data-sharing strategy of (Zhao et al., 2018), where the 50000 training
samples are divided into a globally shared dataset G and private dataset D. We set |G| = 200 and |D| = 49800. Then, we
sort D by the labels, partition it into 120 shards of size 415, and assign each of the 120 users one shard. Each user has 200
samples of globally shared data and 415 samples of private dataset with one label.

(a) IID data distribution. (b) Non-IID data distribution.

Figure 7: Training rounds versus test accuracy of LeNet in (LeCun et al., 1999) on the CIFAR-10 with N = 120 and K = 12.

We measure the test accuracy of the six schemes on the MNIST and CIFAR-10 dataset with the two distribution settings,
the IID and the Non-IID. Our results are demonstrated in Figure 6 and Figure 7. We make the following key observations,
which are similar to the observations on the CIFAR-100 dataset.

• In the IID setting, the Multi-RoundSecAgg schemes show comparable test accuracy to the random selection and random
weighted selection schemes while the Multi-RoundSecAgg schemes provide better multi-round privacy guarantee T .

• In the non-IID setting, the Multi-RoundSecAgg schemes outperform the random selection scheme while showing
comparable test accuracy to the weighted random selection scheme. This is because Multi-RoundSecAgg schemes have
better aggregation fairness gaps as demonstrated in Figure 3(b), which results in better test accuracy in the non-IID
setting.

• In both IID and non-IID settings, the user partitioning scheme has the worst test accuracy as its average aggregation
cardinality is much smaller than the other schemes.

F. Experiment Details
In this section, we provide more details about the experiments of Section 6 and Appendix E.

We summarize the test accuracy of CIFAR-100, CIFAR-10, and MNIST dataset in Table 2, Table 3 and Table 4, respectively.
For all datasets, we run experiments five times with different random seeds and present the average value of the test accuracy
in Table 3 and Table 4.

Hyperparameters and computing resources. For a fair comparison between 6 schemes, we find the best learning rate
from {0.1, 0.03, 0.01, 0.003, 0.001, 0.0003, 0.0001}. Given the choice of the best learning rate η, η is decayed to 0.4η every
400 and 800 rounds to train the LeNet on the CIFAR-10 dataset or train VGG11 on the CIFAR-100 dataset while η is not
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Table 3: Test accuracy of LeNet in (LeCun et al., 1999) on the CIFAR-10 dataset with N = 120 and K = 12.

Scheme IID Setting Non-IID Setting

Random selection 64.64% 45.20%
Weighted random selection 65.06% 47.89%

User partition 55.70% 37.74%
Multi-RoundSecAgg, T=6 65.01% 46.35%
Multi-RoundSecAgg, T=4 64.95% 47.00%
Multi-RoundSecAgg, T=3 64.80% 47.21%

Table 4: Test accuracy of the CNN in (McMahan et al., 2017) on the MNIST dataset with N = 120 and K = 12.

Scheme IID Setting Non-IID Setting

Random selection 98.21% 85.79%
Weighted random selection 98.10% 94.04%

User partition 93.94% 75.26%
Multi-RoundSecAgg, T=6 97.72% 89.88%
Multi-RoundSecAgg, T=4 98.11% 92.51%
Multi-RoundSecAgg, T=3 98.15% 94.16%

decayed in the CNN on the MNIST dataset. To train the LeNet on the CIFAR-10 dataset or train VGG11 on the CIFAR-100
dataset, we use the mini-batch size of 50 and E = 1 local epoch for both IID and Non-IID settings. To train the CNN
on the MNIST dataset, we use the mini-batch size of 100 and E = 1 local epoch for both IID and Non-IID settings. All
experiments are conducted with users equipped with 3.4 GHz 4 cores i-7 Intel CPU and NVIDIA Geforce 1080, and the
users communicate amongst each other through Ethernet to transfer the model parameters.

G. Multi-round Privacy Analysis of the Conventional Random User Selection Strategies
In this appendix, we first theoretically study the multi-round privacy of two random user selection strategies, and show
that they have a very weak multi-round privacy of T = 1 with high probability (for the case where pi = p, ∀i ∈ [N ]).
Furthermore, we also provide additional experiments showing that the server can reconstruct the local updates of all users
with high accuracy when a random selection strategy is used. In the theoretical analysis, to simplify the problem, we assume
that the model of the users have converged and don’t change from one round to the next. However, in the experiments, we
empirically evaluate the error in approximating the individual models of the users (via least-squares error estimation), and
show that the server can approximate individual updates with very small error.

G.1. Theoretical Analysis of the Random Selection Strategies

We start by our theoretical results, where we consider the following two random selection schemes.

1. K-uniform Random Selection. In this scheme, at round t, K users are selected uniformly at random from the set of
available users U (t) if |U (t)| ≥ K. Otherwise, the server skips this round.

2. I.I.D Random Selection. In this scheme, at round t, each user is selected with probability K
N(1−p) independently from

the other available users, where K < N(1− p). Hence, the expected number of selected users at each round is K user.

For both schemes, we show that the server can reconstruct all individual models after N rounds in the worst-case scenario
(assuming that the models do not change over N rounds). Specifically, we show that the participation matrices in both
schemes have full rank with high probability after N rounds. This, in turn, implies that the server can reconstruct all local
models after N rounds with high probability in both schemes. We provide our results formally next in Theorem 3.

Theorem 3. (Random selection schemes have a multi-round privacy guarantee T = 1).

1. Consider the K-uniform random selection scheme, where min(K,N − K) ≥ cN . In this scheme, the server can
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reconstruct all individual models of the N users after N rounds with probability at least

1− 2e−c
′N , (31)

for some constant c′ > 0 that depends on c.

2. Consider the i.i.d random selection scheme, where the users are selected according to Bern( K
N(1−p) ) distribution and

let t = K/N . In this scheme, the server can reconstruct the individual models of the N users after N rounds with
probability at least

1− 2N(1− t)N − (1 + oN (1))N(N − 1)(t2 + (1− t)2)N , (32)

which converges to 1 exponentially fast if t ∈ (0, 1/2) is a fixed constant.

Proof. We first note that if the participation matrix has full rank after N rounds, then the server can reconstruct the model of
each individual user. Hence, we analyze the probability of the N ×N participation matrix being full rank. We now consider
each scheme separately.

1. In the K-uniform random selection scheme, the probability that the participation matrix after N rounds P(N) has full
rank is lower-bounded as follows (Tran, 2020), when min(K,N −K) ≥ cN ,

Pr[P(N) has full rank] ≥ 1− 2e−c
′N ,

for some constant c′ > 0 that depends on c. Hence, it follows that the server can reconstruct all individual models with
probability at least 1− 2e−c

′N .

2. In the i.i.d random selection scheme, the probability that the participation matrix after N rounds P(N) has full rank is
lower-bounded as follows (Jain et al., 2020)

Pr[P(N) has full rank] ≥ 1− 2N(1− t)N − (1 + oN (1))N(N − 1)(t2 + (1− t)2)N ,

which converges to 1 exponentially fast if t = K/N ∈ (0, 1/2) is a fixed constant. Hence, it follows that the probability
the server can reconstruct all individual models is lower-bounded by the same probability.

Remark 12. Our experimental results in Section 6 also show that the multi-round privacy guarantee of the K-uniform
random selection scheme goes to 1 after almost N rounds as shown in Fig. 3(a).

G.2. Experimental Results

We now empirically evaluate the error in approximating the individual gradients of the users (via least-squares error
estimation), and show that the server can approximate individual gradients of all users with a very small error when
K-uniform random selection is used. To do so, we implement a reconstruction algorithm utilizing the least-squares method,
and measure the L2 distance between the true gradients and reconstructed gradients. We consider a FL setting with N = 40
users, where the server aims to choose K = 8 users at every round, to train the LeNet in (LeCun et al., 1999) on the
CIFAR-10 dataset with Non-IID setting, which is the same as the setting in Appendix E.

Let δ(t)i be the gradient of user i at round t, i.e., δ(t)i = x(t)
i − x(t), and δ(t) be the global update at round t, i.e.,

δ(t) = x(t+1) − x(t) = ∆(t)>
individualp(t) where ∆

(t)
individual =

[
w1δ

(t)
1 , . . . , wNδ

(t)
N

]>
∈ RN×d. After a sufficiently large

number of rounds t0, the global model at the server converges and does not change much across the rounds, which results in
that local updates also do not change much across the rounds. Then, we have

∆
(t0;t1)
global = P(t0;t1)∆

(t0)
individual + Z, (33)

where ∆
(t0;t1)
global denotes the concatenate of the global updates from round t0 to round t1 − 1, i.e., ∆

(t0;t1)
global =[

δ(t0), . . . δ(t1−1)
]> ∈ R(t1−t0)×d for t1 > t0, P(t0;t1) ∈ {0, 1}(t1−t0)×N is the participation matrix from round t0

to round t1 − 1, and Z denotes the perturbation (or noise) incurred by the local updates across the rounds.
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(a) K(= 8)-uniform random selection (T = 1).
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(b) Multi-RoundSecAgg (T = 2).

Figure 8: Histogram of the reconstruction error defined in (35) when the K(= 8)-uniform random selection or Multi-RoundSecAgg
(T = 2) scheme is used to train the LeNet on the CIFAR-10 dataset. The average reconstruction errors of K(= 8)-uniform random
selection and Multi-RoundSecAgg (T = 2) are 6.715× 10−3 and 0.7829, respectively, which implies that the server can reconstruct
all local updates when K(= 8)-uniform random selection is used while the server cannot reconstruct the local updates when Multi-
RoundSecAgg (T = 2) is used.

Figure 9: Comparison of the reconstructed images using the model inversion attack (Geiping et al., 2020) with different value of
multi-round privacy guarantee T (left) and measurement of similarity between the reconstructed images and the original images, where
PSNR =∞ and MSE = 0 for two identical images (right).

The server can then estimate ∆
(t0)
individual by utilizing the least-squares method as follows

∆̂
(t0)
individual =

(
P(t0;t1)

>
P(t0;t1)

)−1
P(t0;t1)

>
∆

(t0;t1)
global , (34)

and we measure the reconstruction error as follows

e
(t0)
i =

‖δ(t0)i − δ̂(t0)i ‖22
‖δ(t0)i ‖22

, (35)

where δ̂(t0)i denotes the reconstructed gradient of user i, which corresponds to i-th row of ∆̂
(t0)
individual in (34). On the other

hand, in Multi-RoundSecAgg with multi-round privacy guarantee T = 2, the server cannot estimate the individual gradients
by utilizing (34) because P(t0;t1) is not full rank hence the inverse of P(t0;t1)

>
P(t0;t1) does not exist. The best that the

server can do is to estimate
∑
i∈Gj δ

(t0)
i , where Gj is the index set of the users in the j-th batch. The server can then estimate

δ
(t0)
i by dividing the estimate of

∑
i∈Gj δ

(t0)
i by T , where i ∈ Gj .

Figure 8(a) and Figure 8(b) show the histogram of the reconstruction error of the individual gradients when the K-uniform
random selection scheme and Multi-RoundSecAgg (T = 2) scheme are used, respectively. We set t0 = 1460 and t1 = 1500
in this experiment. We observe that the K-uniform random selection scheme has much smaller average reconstruction error
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1
N

∑N
i=1 e

(t0)
i = 6.715× 10−3 than the average reconstruction error of Multi-RoundSecAgg (T = 2), which implies that

the server can reconstruct all local gradients as the K-uniform random selection scheme has a multi-round privacy guarantee
T = 1.

Finally, the server can reconstruct the training images by applying model inversion attack (Geiping et al., 2020) to the
reconstructed gradient δ̂(t0)i . Figure 9 the reconstructed images of random selection scheme (T = 1) and Multi-RoundSecAgg
(T = 2, 4). We measure the reconstruction performance using peak signal-to-noise ratio (PSNR) and mean square error
(MSE). Large PSNR and small MSE indicate more similarity between the reconstructed and original images, and hence
we can observe that random selection scheme (T = 1) leaks much more information about the original image than
Multi-RoundSecAgg (T = 2, 4).

H. General Convex and Non-Convex Convergence Rates
In this appendix, we discuss extending the convergence proof of (Karimireddy et al., 2020) to our setting. Since we closely
follow (Karimireddy et al., 2020), we mainly here focus on the differences. The main difference between the two settings is
that the number of participating users in (Karimireddy et al., 2020) is fixed as |S(t)| = K across all rounds as dropouts are
not considered, whereas it may change in our case between the rounds based on the availability of the users. Specifically,
the server in our case aims to choose K users at each round. If this is not possible due to the dropouts, the server skips
this round. That is, |S(t)| ∈ {0,K} and E[|S(t)|] = C, where we recall that C is the average aggregation cardinality that
depends on the desired multi-round privacy guarantee T .

Next, we recall the setting and the assumptions of (Karimireddy et al., 2020). In (Karimireddy et al., 2020), the problem is
formalized as minimizing a global loss function as follows

min
x
L(x) s.t. L(x) =

1

N

N∑
i=1

Li(x), (36)

where L is bounded from below by L∗, the loss function of user i Li is ρ-smooth and gi(x) = ∇Li(x, ζi) is an unbiased
stochastic gradient of Li with variance bounded by σ2. Furthermore, following the assumptions of (Karimireddy et al.,
2020), we consider the following assumptions.
Assumption 1. (G,B)-Bounded Gradient Dissimilarity (BGD). There exists constants G ≥ 0 and B ≥ 1 such that

1

N

N∑
i=1

‖∇Li(x)‖2 ≤ G2 +B2‖∇Li(x)‖2,∀x, (37)

and when {Li} are convex, this assumption can be relaxed as

1

N

N∑
i=1

‖∇Li(x)‖2 ≤ G2 + 2ρB2(L(x)− L∗),∀x. (38)

Assumption 2. δ-Bounded Hessian Dissimilarity (BHD).

‖∇2Li(x)−∇2L(x)‖ ≤ δ, ∀x, (39)

and Li is δ-weakly.
Assumption 3. Liis µ-convex for µ ≥ 0 and satisfies

〈∇Li(x),y− x〉 ≤ −
(
Li(x)− Li(y) +

µ

2
‖x− y‖2

)
, for any i, x,y, (40)

where µ can be 0 (general convex case).
Assumption 4. gi(x) = ∇Li(x; ζi) is an unbiased stochastic gradient of Li with bounded variance. That is, we have

E [‖gi(x)−∇Li(x)‖] ≤ σ2, for any i, x. (41)

Assumption 5. {Li} are ρ-smooth and satisfy

‖∇Li(x)−∇Li(x)‖ ≤ ρ‖x− y‖, for any i, x,y. (42)
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It is also worth noting that when {Li} are convex and x∗ this assumption implies that

1

2ρN

N∑
i=1

‖∇Li(x)− Li(x∗)‖ ≤ L(x)− L∗, (43)

and when Li is twice differentiable this assumption implies that ‖∇2Li(x)‖ ≤ ρ for any x.

We now recall the global and the local updates of the setting considered in (Karimireddy et al., 2020). x(t) is the global
model after round t and x(t)

i,e is the local model of user i in round t and local step e. In round t, the server selects a subset of

users S(t). Each user then copies the global model x(t)
i,0 = x(t−1) and performs E local update steps as follows

x(t)i,e := x(t)
i,e−1 − ηlgi(x(t)i,e−1), (44)

where ηl is the local step size. The users then send their updates and the server updates the global model as follows

x(t) := x(t−1) +
ηg
K

∑
i∈S

(x(t)
i,E − x(t−1)), (45)

where ηg is the global step size. Finally, the output is given by

x(J) = x(t−1) with probability
θt∑
τ θτ

for t ∈ {1, · · · , J + 1} (46)

for some weights {θt}, where J is the total number of rounds. Next, we restate the convergence Theorem of (Karimireddy
et al., 2020).

Theorem. Suppose that {Li} satisfy Assumptions 1, 4 and 5. Then for each of the following cases there exists weights {θt}
and local step sizes ηl such that for any global step size ηg ≥ 1, we have

• Strongly convex. If {Li} satisfy Assumption 3 for µ > 0, ηl ≤ 1
8(1+B2)ρEηg

, J ≥ 8(1+B2)ρ
µ , then

E
[
L(xJ)

]
− L(x∗) ≤ Õ

(
M2

µJEK
+

ρG2

µ2J2
+ µD2 exp

(
− µ

16(1 +B2)ρ
J

))
. (47)

• General convex. If {Li} satisfy Assumption 3 for µ = 0, ηl ≤ 1
8(1+B2)ρEηg

, J ≥ 1, then

E
[
L(xJ)

]
− L(x∗) ≤ O

(
MD√
JEK

+
D4/3(ρG2)1/3

(J + 1)2/3
+
B2ρD2

J

)
. (48)

• Non-convex. If {Li} satisfy Assumption 1 and ηl ≤ 1
8(1+B2)ρEηg

, then

E
[
‖∇L(xJ)‖2

]
≤ O

(
ρM
√
F√

JEK
+
F 2/3(ρG2)1/3

(J + 1)2/3
+
B2ρF

J

)
. (49)

where M2 = σ2(1 +K/η2g) + E(1−K/N)G2, D = ‖x0 − x∗‖ and F = L(x0)− L∗.

As we discussed, the main difference between our setting and the setting of (Karimireddy et al., 2020) is that the number of
selected users in our case in each round is a random variable |S(t)| ∈ {0,K} with mean equal to the average aggregation
cardinality C. We now show the effect of this difference on the key lemma of (Karimireddy et al., 2020). We first recall this
key lemma from (Karimireddy et al., 2020) and then derive a simple corollary that extends this lemma to our setting.

Lemma. (Separating Mean and Variance)[Lemma 4 in (Karimireddy et al., 2020)]. Let {E1,E2, · · · ,Ew} be random
vectors in Rd, which may not be independent. We consider the following two cases.
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• When E[Ei] = ζi and E[‖Ei − ζi‖2] ≤ σ2, then we have

E[‖
w∑
i=1

Ei‖2] ≤ ‖
w∑
i=1

ζi‖2 + w2σ2. (50)

• When E[Ei|Ei−1, · · · ,E1] = ζi and E[‖Ei − ζi‖2] ≤ σ2, then we have

E[‖
w∑
i=1

Ei‖2] ≤ 2‖
w∑
i=1

ζi‖2 + 2wσ2. (51)

In this key lemma, w is constant as the setting (Karimireddy et al., 2020) assumes the number of participating users is fixed
as K in every round. That is, this lemma is applied with w = K. In our case, however, the number of participating users is a
random variable. Hence, we consider this case in the following corollary.

Corollary 1. Let {E1,E2, · · · ,EW } be random vectors in Rd, which may not be independent and W ∈ {0, w} is a random
variable that is independent of Ei and E[W ] = µW . We consider the following two cases.

• When E[Ei] = ζi and E[‖Ei − ζi‖2] ≤ σ2, then we have

E[‖
W∑
i=1

Ei‖2] ≤ µW
w
‖
w∑
i=1

ζi‖2 + wµWσ
2. (52)

• When E[Ei|Ei−1, · · · ,E1] = ζi and E[‖Ei − ζi‖2] ≤ σ2, then we have

E[‖
W∑
i=1

Ei‖2] ≤ 2
µW
w
‖
w∑
i=1

ζi‖2 + 2µWσ
2. (53)

This is the main difference between our setting and the setting considered in (Karimireddy et al., 2020) and the rest of
the proof follows similarly. Similar to Theorem 2, we can see that the average aggregation cardinality C controls the
convergence rate and hence there is a trade-off between the multi-round privacy T and the convergence rate.


