
LIGHTSECAGG: A LIGHTWEIGHT AND VERSATILE DESIGN FOR
SECURE AGGREGATION IN FEDERATED LEARNING

Jinhyun So * 1 Chaoyang He * 1 Chien-Sheng Yang * 2 Songze Li 3 4 Qian Yu 5 Ramy E. Ali 1 Basak Guler 6

Salman Avestimehr 1

ABSTRACT
Secure model aggregation is a key component of federated learning (FL) that aims at protecting the privacy of
each user’s individual model while allowing for their global aggregation. It can be applied to any aggregation-
based FL approach for training a global or personalized model. Model aggregation needs to also be resilient
against likely user dropouts in FL systems, making its design substantially more complex. State-of-the-art secure
aggregation protocols rely on secret sharing of the random-seeds used for mask generations at the users to
enable the reconstruction and cancellation of those belonging to the dropped users. The complexity of such
approaches, however, grows substantially with the number of dropped users. We propose a new approach, named
LightSecAgg, to overcome this bottleneck by changing the design from “random-seed reconstruction of the
dropped users” to “one-shot aggregate-mask reconstruction of the active users via mask encoding/decoding”. We
show that LightSecAgg achieves the same privacy and dropout-resiliency guarantees as the state-of-the-art
protocols while significantly reducing the overhead for resiliency against dropped users. We also demonstrate
that, unlike existing schemes, LightSecAgg can be applied to secure aggregation in the asynchronous FL
setting. Furthermore, we provide a modular system design and optimized on-device parallelization for scalable
implementation, by enabling computational overlapping between model training and on-device encoding, as well
as improving the speed of concurrent receiving and sending of chunked masks. We evaluate LightSecAgg
via extensive experiments for training diverse models (logistic regression, shallow CNNs, MobileNetV3, and
EfficientNet-B0) on various datasets (MNIST, FEMNIST, CIFAR-10, GLD-23K) in a realistic FL system with
large number of users and demonstrate that LightSecAgg significantly reduces the total training time.

1 INTRODUCTION

Federated learning (FL) has emerged as a promising ap-
proach to enable distributed training over a large number of
users while protecting the privacy of each user (McMahan
et al., 2017; 2021; Wang et al., 2021). The key idea of FL is
to keep users’ data on their devices and instead train local
models at each user. The locally trained models are then ag-
gregated via a server to update a global model, which is then

*Equal contribution 1University of Southern California, Los An-
geles, California, USA 2Mediatek Inc., Hsinchu, Taiwan 3Internet
of Things Thrust, The Hong Kong University of Science and Tech-
nology (Guangzhou), Guangzhou, China 4Department of Com-
puter Science and Engineering, The Hong Kong University of
Science and Technology, Hong Kong SAR, China 5Electrical and
Computer Engineering, Princeton University, New Jersey, USA
6Department of Electrical and Computer Engineering, Univer-
sity of California at Riverside, Riverside, California, USA. Cor-
respondence to: Jinhyun So <jinhyuns@usc.edu>, Chaoyang He
<chaoyang.he@usc.edu>.

This paper is accepted to Proceedings of the 5 th MLSys Con-
ference, Santa Clara, CA, USA, 2022. Copyright 2022 by the
author(s).

pushed back to users. Due to model inversion attacks (e.g.,
(Geiping et al., 2020; Wang et al., 2019; Zhu & Han, 2020)),
a critical consideration in FL design is to also ensure that the
server does not learn the locally trained model of each user
during model aggregation. Furthermore, model aggregation
should be robust against likely user dropouts (due to poor
connectivity, low battery, unavailability, etc) in FL systems.
As such, there have been a series of works that aim at devel-
oping secure aggregation protocols for FL that protect the
privacy of each user’s individual model while allowing their
global aggregation amidst possible user dropouts (Bonawitz
et al., 2017; Kadhe et al., 2020; So et al., 2021d).

The state-of-the-art secure aggregation protocols essentially
rely on two main principles: (1) pairwise random-seed
agreement between users to generate masks that hide users’
models while having an additive structure that allows their
cancellation when added at the server and (2) secret shar-
ing of the random-seeds to enable the reconstruction and
cancellation of masks belonging to dropped users. The
main drawback of such approaches is that the number of
mask reconstructions at the server substantially grows as

LightSecAgg: A Lightweight and Versatile Design for Secure Aggregation in Federated Learning

Figure 1. Illustration of our proposed LightSecAgg protocol. (1) Sharing encoded mask: users encode and share their generated local
masks. (2) Masking model: each user masks its model by random masks, and uploads its masked model to the server. (3) Reconstructing
aggregate-mask: The surviving users upload the aggregate of encoded masks to reconstruct the desired aggregate-mask. The server
recovers the aggregate-model by canceling out the reconstructed aggregate-mask.

more users are dropped, causing a major computational bot-
tleneck. For instance, the execution time of the SecAgg
protocol proposed in (Bonawitz et al., 2017) is observed
to be significantly limited by mask reconstructions at the
server (Bonawitz et al., 2019b). SecAgg+ (Bell et al.,
2020), an improved version of SecAgg, reduces the over-
head at the server by replacing the complete communication
graph of SecAgg with a sparse random graph, such that
secret sharing is only needed within a subset of users rather
than all users pairs. However, the number of mask recon-
structions in SecAgg+ still increases as more users drop,
eventually limits the scalability of FL systems. There have
also been several other approaches, such as (So et al., 2021d;
Kadhe et al., 2020), to alleviate this bottleneck, however
they either increase round/communication complexity or
compromise the dropout and privacy guarantees.

Contributions. We propose a new perspective for secure
model aggregation in FL by turning the design focus from
“pairwise random-seed reconstruction of the dropped users”
to “one-shot aggregate-mask reconstruction of the surviv-
ing users”. Using this viewpoint, we develop a new proto-
col named LightSecAgg that provides the same level of
privacy and dropout-resiliency guarantees as the state-of-
the-art while substantially reducing the aggregation (hence
runtime) complexity. As illustrated in Figure 1, the main
idea of LightSecAgg is that each user protects its local
model using a locally generated random mask. This mask
is then encoded and shared to other users in such a way
that the aggregate-mask of any sufficiently large set of sur-
viving users can be directly reconstructed at the server. In
sharp contrast to prior schemes, in this approach the server
only needs to reconstruct one mask in the recovery phase,
independent of the number of dropped users.

Moreover, we provide a modular federated training system
design and optimize on-device parallelization to improve the
efficiency when secure aggregation and model training in-
teract at the edge devices. This enables computational over-
lapping between model training and on-device encoding,
as well as improving the speed of concurrent receiving and
sending of chunked masks. To the best of our knowledge,

this provides the first open-sourced and secure aggregation-
enabled FL system that is built on the modern deep learning
framework (PyTorch) and neural architecture (e.g., ResNet)
with system and security co-design.

We further propose system-level optimization methods to
improve the run-time. In particular, we design a federated
training system and take advantage of the fact that the gener-
ation of random masks is independent of the computation of
the local model, hence each user can parallelize these two
operations via a multi-thread processing, which is beneficial
to all evaluated secure aggregation protocols in reducing the
total running time.

In addition to the synchronous FL setting, where all users
train local models based on the same global model and the
server performs a synchronized aggregation at each round,
we also demonstrate that LightSecAgg enables secure
aggregation when no synchrony between users’ local up-
dates are imposed. This is unlike prior secure aggregation
protocols, such as SecAgg and SecAgg+, that are not
compatible with asynchronous FL. To the best of our knowl-
edge, in the asynchronous FL setting, this is the first work
to protect the privacy of the individual updates without re-
lying on differential privacy (Truex et al., 2020) or trusted
execution environments (TEEs) (Nguyen et al., 2021).

We run extensive experiments to empirically demonstrate
the performance of LightSecAgg in a real-world cross-
device FL setting with up to 200 users and compare it with
two state-of-the-art protocols SecAgg and SecAgg+. To
provide a comprehensive coverage of realistic FL settings,
we train various machine learning models including logistic
regression, convolutional neural network (CNN) (McMa-
han et al., 2017), MobileNetV3 (Howard et al., 2019), and
EfficientNet-B0 (Tan & Le, 2019), for image classification
over datasets of different image sizes: low resolution images
(FEMNIST (Caldas et al., 2018), CIFAR-10 (Krizhevsky
et al., 2009)), and high resolution images (Google Land-
marks Dataset 23k (Weyand et al., 2020)). The empiri-
cal results show that LightSecAgg provides significant
speedup for all considered FL training tasks, achieving a

LightSecAgg: A Lightweight and Versatile Design for Secure Aggregation in Federated Learning

performance gain of 8.5×-12.7× over SecAgg and 2.9×-
4.4× over SecAgg+, in realistic bandwidth settings at the
users. Hence, compared to baselines, LightSecAgg can
even survive and speedup the training of large deep neural
network models on high resolution image datasets. Break-
downs of the total running time further confirm that the
primary gain lies in the complexity reduction at the server
provided by LightSecAgg, especially when the number
of users are large.

Related works. Beyond the secure aggregation protocols
proposed in (Bonawitz et al., 2017; Bell et al., 2020), there
have been also other works that aim towards making se-
cure aggregation more efficient. TurboAgg (So et al.,
2021d) utilizes a circular communication topology to re-
duce the communication overhead, but it incurs an addi-
tional round complexity and provides a weaker privacy
guarantee than SecAgg as it guarantees model privacy in
the average sense rather than in the worst-case scenario.
FastSecAgg (Kadhe et al., 2020) reduces per-user over-
head by using the Fast Fourier Transform multi-secret shar-
ing, but it provides lower privacy and dropout guarantees
compared to the other state-of-the-art protocols. The idea
of one-shot reconstruction of the aggregate-mask was also
employed in (Zhao & Sun, 2021), where the aggregated
masks corresponding to each user dropout pattern was pre-
pared by a trusted third party, encoded and distributed to
users prior to model aggregation. The major advantages of
LightSecAgg over the scheme in (Zhao & Sun, 2021)
are 1) not requiring a trusted third party; and 2) requiring
significantly less randomness generation and a much smaller
storage cost at each user. Furthermore, there is also a lack
of system-level performance evaluations of (Zhao & Sun,
2021) in FL experiments. Finally, we emphasize that our
LightSecAgg protocol can be applied to any aggregation-
based FL approach (e.g., FedNova (Wang et al., 2020),
FedProx (Li et al., 2018), FedOpt (Asad et al., 2020)),
personalized FL frameworks (T. Dinh et al., 2020; Li et al.,
2020; Fallah et al., 2020; Mushtaq et al., 2021; He et al.,
2021e), communication-efficient FL (Shlezinger et al., 2020;
Reisizadeh et al., 2020; Elkordy & Avestimehr, 2020), and
asynchronous FL, and their applications in computer vision
(He et al., 2021d; 2020a;b), natural language processing
(Lin et al., 2021; He et al., 2021c), data mining (He et al.,
2021a; Ezzeldin et al., 2021; Liang et al., 2021; He et al.,
2021b; 2020c), and Internet of things (IoTs) (Zhang et al.,
2021a;b).

2 PROBLEM SETTING

FL is a distributed training framework for machine learn-
ing, where the goal is to learn a global model x with di-
mension d using data held at edge devices. This can be
represented by minimizing a global objective function F :

F (x) =
∑N
i=1 piFi(x), where N is the total number of

users, Fi is the local objective function of user i, and pi ≥ 0
is a weight parameter assigned to user i to specify the rela-
tive impact of each user such that

∑N
i=1 pi = 1.1

Training in FL is performed through an iterative process,
where the users interact through a server to update the global
model. At each iteration, the server shares the current global
model, denoted by x(t), with the edge users. Each user i
creates a local update, xi(t). The local models are sent to
the server and then aggregated by the server. Using the
aggregated models, the server updates the global model
x(t + 1) for the next iteration. In FL, some users may
potentially drop from the learning procedure for various
reasons such as having unreliable communication connec-
tions. The goal of the server is to obtain the sum of the
surviving users’ local models. This update equation is given
by x(t+1) = 1

|U(t)|
∑
i∈U(t) xi(t), where U(t) denotes the

set of surviving users at iteration t. Then, the server pushes
the updated global model x(t+ 1) to the edge users.

Local models carry extensive information about the users’
datasets, and in fact their private data can be reconstructed
from the local models by using a model inversion at-
tack (Geiping et al., 2020; Wang et al., 2019; Zhu & Han,
2020). To address this privacy leakage from local models,
secure aggregation has been introduced in (Bonawitz et al.,
2017). A secure aggregation protocol enables the compu-
tation of the aggregated global model while ensuring that
the server (and other users) learn no information about the
local models beyond their aggregated model. In particular,
the goal is to securely recover the aggregate of the local
models y =

∑
i∈U xi, where the iteration index t is omitted

for simplicity. Since secure aggregation protocols build on
cryptographic primitives that require all operations to be
carried out over a finite field, we assume that the elements
of xi and y are from a finite field Fq for some field size q.
We require a secure aggregation protocol for FL to have the
following key features.

• Threat model and privacy guarantee. We consider a
threat model where the users and the server are honest
but curious. We assume that up to T (out of N) users can
collude with each other as well as with the server to infer
the local models of other users. The secure aggregation
protocol has to guarantee that nothing can be learned be-
yond the aggregate-model, even if up to T users cooperate
with each other. We consider privacy leakage in the strong
information-theoretic sense. This requires that for every
subset of users T ⊆ [N] of size at most T , we must have
mutual information I({xi}i∈[N];Y|

∑
i∈U xi,ZT) = 0,

where Y is the collection of information at the server, and
ZT is the collection of information at the users in T .

1For simplicity, we assume that all users have equal-sized
datasets, i.e., pi = 1

N
for all i ∈ [N].

LightSecAgg: A Lightweight and Versatile Design for Secure Aggregation in Federated Learning

• Dropout-resiliency guarantee. In the FL setting, it is
common for users to be dropped or delayed at any time
during protocol execution for various reasons, e.g., de-
layed/interrupted processing, poor wireless channel con-
ditions, low battery, etc. We assume that there are at most
D dropped users during the execution of protocol, i.e.,
there are at least N − D surviving users after potential
dropouts. The protocol must guarantee that the server can
correctly recover the aggregated models of the surviving
users, even if up to D users drop.

• Applicability to asynchronous FL. Synchronizing all
users for training at each round of FL can be slow and
costly, especially when the number of users are large.
Asynchronous FL handles this challenge by incorporating
the updates of the users in asynchronous fashion (Xie
et al., 2019; van Dijk et al., 2020; Chai et al., 2020; Chen
et al., 2020). This asynchrony, however, creates a mis-
match of staleness among the users, which causes the
incompatibility of the existing secure aggregation proto-
cols (such as (Bonawitz et al., 2017; Bell et al., 2020)).
More specifically, since it is not known a priori which
local models will be aggregated together, the current se-
cure aggregation protocols that are based on pairwise
random masking among the users fail to work. We aim at
designing a versatile secure aggregation protocol that is
applicable to both synchronous and asynchronous FL.

Goal. We aim to design an efficient and scalable secure
aggregation protocol that simultaneously achieves strong
privacy and dropout-resiliency guarantees, scaling linearly
with the number of users N , e.g., simultaneously achieves
privacy guarantee T = N

2 and dropout-resiliency guarantee
D = N

2 − 1. Moreover, the protocol should be compatible
with both synchronous and asynchronous FL.

3 OVERVIEW OF BASELINE PROTOCOLS:
SECAGG AND SECAGG+

We first review the state-of-the-art secure aggregation proto-
cols SecAgg (Bonawitz et al., 2017) and SecAgg+ (Bell
et al., 2020) as our baselines. Essentially, SecAgg and
SecAgg+ require each user to mask its local model using
random keys before aggregation. In SecAgg, the privacy of
the individual models is protected by pairwise random mask-
ing. Through a key agreement (e.g., Diffie-Hellman (Diffie
& Hellman, 1976)), each pair of users i, j ∈ [N] agree
on a pairwise random seed ai,j = Key.Agree(ski, pkj) =
Key.Agree(skj , pki) where ski and pki are the private and
public keys of user i, respectively. In addition, user i
creates a private random seed bi to prevent the privacy
breaches that may occur if user i is only delayed rather than
dropped, in which case the pairwise masks alone are not
sufficient for privacy protection. User i ∈ [N] then masks

its model xi as x̃i = xi + PRG(bi) +
∑
j:i<j PRG(ai,j)−∑

j:i>j PRG(aj,i), where PRG is a pseudo random genera-
tor, and sends it to the server. Finally, user i secret shares
its private seed bi as well as private key ski with the other
users via Shamir’s secret sharing (Yao, 1982). From the
subset of users who survived the previous stage, the server
collects either the shares of the private key belonging to a
dropped user, or the shares of the private seed belonging to a
surviving user (but not both). Using the collected shares, the
server reconstructs the private seed of each surviving user,
and the pairwise seeds of each dropped user. The server
then computes the aggregated model as follows∑
i∈U

xi =
∑
i∈U

(x̃i − PRG(bi))

+
∑
i∈D

∑
j:i<j

PRG(ai,j)−
∑
j:i>j

PRG(aj,i)

 , (1)

where U and D represent the set of surviving and dropped
users, respectively. SecAgg protects model privacy against
T colluding users and is robust to D user dropouts as long
as N −D > T .

We now illustrate SecAgg through a simple example. Con-
sider a secure aggregation problem in FL, where there are
N = 3 users with T = 1 privacy guarantee and dropout-
resiliency guarantee D = 1. Each user i ∈ {1, 2, 3} holds
a local model xi ∈ Fdq where d is the model size and q is
the size of the finite field. As shown in Figure 2, SecAgg
is composed of the following three phases.

Offline pairwise agreement. User 1 and user 2 agree on
pairwise random seed a1,2. User 1 and user 3 agree on
pairwise random seed a1,3. User 2 and user 3 agree on
pairwise random seed a2,3. In addition, user i ∈ {1, 2, 3}
creates a private random seed bi. Then, user i secret shares
bi and its private key ski with the other users via Shamir’s
secret sharing. In this example, a 2 out of 3 secret sharing is
used to tolerate 1 curious user.

Masking and uploading of local models. To provide the
privacy of each individual model, user i ∈ {1, 2, 3} masks
its model xi as follows:

x̃1 = x1 + n1 + z1,2 + z1,3,

x̃2 = x2 + n2 + z2,3 − z1,2,

x̃3 = x3 + n3 − z1,3 − z2,3,

where ni = PRG(bi) and zi,j = PRG(ai,j) are the random
masks generated by a pseudo random generator. Then user
i ∈ {1, 2, 3} sends its masked local model x̃i to the server.

Aggregate-model recovery. Suppose that user 1 drops in
the previous phase. The goal of the server is to compute the
aggregate of models x2 + x3. Note that

x2 + x3 = x̃2 + x̃3 + (z1,2 + z1,3 − n2 − n3). (2)

LightSecAgg: A Lightweight and Versatile Design for Secure Aggregation in Federated Learning

Figure 2. An illustration of SecAgg in the example of 3 users is
depicted. The users first agree on pairwise random seeds, and
secret share their private random seeds and private keys. The local
models are protected by the pairwise random masking. Suppose
that user 1 drops. To recover the aggregate-mask, the server first
reconstructs the private random seeds of the surviving users and
the private key of user 1 by collecting the secret shares for each
of them. Then, the server recovers z1,2, z1,3, n2 and n3, which
incurs the computational cost of 4d at the server.

Hence, the server needs to reconstruct masks n2, n3, z1,2,
z1,3 to recover x2 + x3. To do so, the server has to collect
two shares for each of b2, b3, sk1, and then compute the
aggregate model by (2). Since the complexity of evaluating
a PRG scales linearly with its size, the computational cost
of the server for mask reconstruction is 4d.

We note that SecAgg requires the server to compute a PRG
function on each of the reconstructed seeds to recover the
aggregated masks, which incurs the overhead ofO(N2) (see
more details in Section 5) and dominates the overall exe-
cution time of the protocol (Bonawitz et al., 2017; 2019b).
SecAgg+ reduces the overhead of mask reconstructions
fromO(N2) toO(N logN) by replacing the complete com-
munication graph of SecAgg with a sparse random graph
of degreeO(logN) to reduce both communication and com-
putational loads. Reconstructing pairwise random masks in
SecAgg and SecAgg+ poses a major bottleneck in scaling
to a large number of users.

Remark 1. (Incompatibility of SecAgg and SecAgg+
with Asynchronous FL). It is important to note that SecAgg
and SecAgg+ cannot be applied to asynchronous FL as
the cancellation of the pairwise random masks based on the
key agreement protocol is not guaranteed. This is because
the users do not know a priori which local models will be
aggregated together, hence the masks cannot be designed to
cancel out in these protocols. We explain this in more detail
in Appendix F.2. It is also worth noting that a recently pro-
posed protocol known as FedBuff (Nguyen et al., 2021)
enables secure aggregation in asynchronous FL through a
trusted execution environment (TEE)-enabled buffer, where
the server stores the local models that it receives in this pri-
vate buffer. The reliance of FedBuff on TEEs, however,
limits the buffer size in this approach as TEEs have limited
memory. It would also limit its application to FL settings
where TEEs are available.

Figure 3. An illustration of LightSecAgg in the example of 3
users is depicted. Each user first generates a single mask. Each
mask of a user is encoded and shared to other users. Each user’s
local model is protected by its generated mask. Suppose that user 1
drops during the execution of protocol. The server directly recovers
the aggregate-mask in one shot. In this example, LightSecAgg
reduces the computational cost at the server from 4d to d.

4 LIGHTSECAGG PROTOCOL

Before providing a general description of LightSecAgg,
we first illustrate its key ideas through the previous 3-user
example in the synchronous setting. As shown in Figure 3,
LightSecAgg has the following three phases.

Offline encoding and sharing of local masks. User i ∈
{1, 2, 3} randomly picks zi and ni from Fdq . User i ∈
{1, 2, 3} creates the masked version of zi as

z̃1,1 = −z1 + n1, z̃1,2 = 2z1 + n1, z̃1,3 = z1 + n1;

z̃2,1 = −z2 + n2, z̃2,2 = 2z2 + n2, z̃2,3 = z2 + n2;

z̃3,1 = −z3 + n3, z̃3,2 = 2z3 + n3, z̃3,3 = z3 + n3;

and user i ∈ {1, 2, 3} sends z̃i,j to each user j ∈ {1, 2, 3}.
Thus, user i ∈ {1, 2, 3} receives z̃j,i for j ∈ {1, 2, 3}.
In this case, this procedure provides robustness against 1
dropped user and privacy against 1 curious user.

Masking and uploading of local models. To make each
individual model private, each user i ∈ {1, 2, 3} masks its
local model as follows:

x̃1 = x1 + z1, x̃2 = x2 + z2, x̃3 = x3 + z3, (3)

and sends its masked model to the server.

One-shot aggregate-model recovery. Suppose that user 1
drops in the previous phase. To recover the aggregate of
models x2 + x3, the server only needs to know the aggre-
gated masks z2 + z3. To recover z2 + z3, the surviving user
2 and user 3 send z̃2,2 + z̃3,2 and z̃2,3 + z̃3,3,

z̃2,2 + z̃3,2 = 2(z2 + z3) + n2 + n3,

z̃2,3 + z̃3,3 = (z2 + z3) + n2 + n3,

to the server, respectively. After receiving the messages
from user 2 and user 3, the server can directly recover the
aggregated masks via an one-shot computation as follows:

z2 + z3 = z̃2,2 + z̃3,2 − (z̃2,3 + z̃3,3). (4)

LightSecAgg: A Lightweight and Versatile Design for Secure Aggregation in Federated Learning

Then, the server recovers the aggregate-model x2 + x3 by
subtracting z2 + z3 from x̃2 + x̃3. As opposed to SecAgg
which has to reconstruct the random seeds of the dropped
users, LightSecAgg enables the server to reconstruct the
desired aggregate of masks via a one-shot recovery. Com-
pared with SecAgg, LightSecAgg reduces the server’s
computational cost from 4d to d in this simple example.

4.1 General Description of LightSecAgg for
Synchronous FL

We formally present LightSecAgg, whose idea is to en-
code the local generated random masks in a way that the
server can recover the aggregate of masks from the encoded
masks via an one-shot computation with a cost that does not
scale with N . LightSecAgg has three design parameters:
(1) 0 ≤ T ≤ N − 1 representing the privacy guarantee; (2)
0 ≤ D ≤ N − 1 representing the dropout-resiliency guar-
antee; (3) 1 ≤ U ≤ N representing the targeted number of
surviving users. In particular, parameters T , D, and U are
selected such that N −D ≥ U > T ≥ 0.

LightSecAgg is composed of three main phases. First,
each user first partitions its local random mask to U − T
pieces and creates encoded masks via a Maximum Distance
Separable (MDS) code (Roth & Lempel, 1989; Yu et al.,
2019; Tang et al., 2021; So et al., 2021c) to provide ro-
bustness against D dropped users and privacy against T
colluding users. Each user sends one of the encoded masks
to one of the other users for the purpose of one-shot recov-
ery. Second, each user uploads its masked local model to the
server. Third, the server reconstructs the aggregated masks
of the surviving users to recover their aggregate of models.
Each surviving user sends the aggregated encoded masks
to the server. After receiving U aggregated encoded masks
from the surviving users, the server recovers the aggregate-
mask and the desired aggregate-model. The pseudo code
of LightSecAgg is provided in Appendix A. We now
describe each of these phases in detail.

Offline encoding and sharing of local masks. User i ∈
[N] picks zi uniformly at random from Fdq and partitions it

to U − T sub-masks [zi]k ∈ F
d

U−T
q , k ∈ [U − T]. With the

randomly picked [ni]k ∈ F
d

U−T
q for k ∈ {U−T+1, . . . , U},

user i ∈ [N] encodes sub-masks [zi]k’s as

[z̃i]j = ([zi]1, . . . , [zi]U−T , [ni]U−T+1, . . . , [ni]U) ·Wj ,
(5)

where Wj is j’th column of a T -private MDS matrix W ∈
FU×Nq . In particular, we say an MDS matrix2 is T -private
iff the submatrix consisting of its {U − T + 1, ..., U}-th
rows is also MDS. A T -private MDS matrix guarantees that

2A matrix W ∈ FU×N
q (U < N) is an MDS matrix if any

U × U sub-matrix of W is non-singular.

I(zi; {[z̃i]j}j∈T) = 0, for any i ∈ [N] and any T ⊆ [N]
of size T , if [ni]k’s are jointly uniformly random. We can
always find T -private MDS matrices for any U , N , and T
(e.g., (Shamir, 1979; Yu et al., 2019; Roth & Lempel, 1989)).
Each user i ∈ [N] sends [z̃i]j to user j ∈ [N]\{i}. In the
end of offline encoding and sharing of local masks, each
user i ∈ [N] has [z̃j]i from j ∈ [N].3

Masking and uploading of local models. To protect the
local models, each user i masks its local model as x̃i =
xi + zi, and sends it to the server. Since some users may
drop in this phase, the server identifies the set of surviving
users, denoted by U1 ⊆ [N]. The server intends to recover∑
i∈U1 xi. We note that before masking the model, each

user quantizes the local model to convert from the domain
of real numbers to the finite field (Appendix F.3.2).

One-shot aggregate-model recovery. After identifying the
surviving users in the previous phase, user j ∈ U1 is notified
to send its aggregated encoded sub-masks

∑
i∈U1 [z̃i]j to the

server for the purpose of one-shot recovery. We note that
each

∑
i∈U1 [z̃i]j is an encoded version of

∑
i∈U1 [zi]k for

k ∈ [U − T] using the MDS matrix W (see more details in
Appendix B). Thus, the server is able to recover

∑
i∈U1 [zi]k

for k ∈ [U − T] via MDS decoding after receiving a set of
any U messages from the participating users. The server
obtains the aggregated masks

∑
i∈U1 zi by concatenating∑

i∈U1 [zi]k’s. Lastly, the server recovers the desired ag-
gregate of models for the set of participating users U1 by
subtracting

∑
i∈U1 zi from

∑
i∈U1 x̃i.

Remark 2. Note that it is not necessary to have a sta-
ble communication link between every pair of users in
LightSecAgg. Specifically, given the design parameter
U , LightSecAgg only requires at least U surviving users
at any time during the execution. That is, even if up toN−U
users drop or get delayed due to unstable communication
links, the server can still reconstruct the aggregate-mask.

Remark 3. We note that LightSecAgg directly applies
for secure aggregation of weighted local models. The shar-
ing of the masking keys among the clients does not require
the knowledge of the weight coefficients. For example,
LightSecAgg can work for the case in which all users
do not have equal-sized datasets. Suppose that user i holds
a dataset with a number of samples si. Rather than di-
rectly masking the local model xi, user i first computes
x
′

i = sixi. Then, user i uploads x
′

i + zi to the server.
Through the LightSecAgg protocol, the server can re-
cover

∑
i∈U x

′

i =
∑
i∈U sixi securely. By dividing by∑

i∈U si, the server can obtain the desired aggregate of
weighted model

∑
i∈U pixi where pi = si∑

i∈U si
.

3All users communicate through secure (private and authenti-
cated) channels, i.e., the server would only receive the encrypted
version of [z̃i]j’s. Such secure communication is also used in prior
works on secure aggregation, e.g., SecAgg, SecAgg+.

LightSecAgg: A Lightweight and Versatile Design for Secure Aggregation in Federated Learning

4.2 Extension to Asynchronous FL

We now describe how LightSecAgg can be applied to
asynchronous FL. We consider the asynchronous FL set-
ting with bounded staleness as considered in (Nguyen et al.,
2021), where the updates of the users are not synchronized
and the staleness of each user is bounded by τmax. In this
setting, the server stores the models that it receives in a
buffer of size K and updates the global model once the
buffer is full. More generally, LightSecAgg may apply
to any asynchronous FL setting where a group of local mod-
els are aggregated at each round. That is, the group size
does not need to be fixed in all rounds. While the baselines
are not compatible with this setting, LightSecAgg can be
applied by encoding the local masks in a way that the server
can recover the aggregate of masks from the encoded masks
via a one-shot computation, even though the masks are gen-
erated in different training rounds. Specifically, the users
share the encoded masks with the timestamp to figure out
which encoded masks should be aggregated for the recon-
struction of the aggregate of masks. As the users aggregate
the encoded masks after the server stores the local updates
in the buffer, the users can aggregate the encoded masks
according to the timestamp of the stored updates. Due to
the commutative property of MDS coding and addition, the
server can reconstruct the aggregate of masks even though
the masks are generated in different training rounds. We
postpone the detailed description of the LightSecAgg
protocol for the asynchronous setting to Appendix F.

5 THEORETICAL ANALYSIS

5.1 Theoretical Guarantees

We now state our main result for the theoretical guarantees
of the LightSecAgg protocol.
Theorem 1. Consider a secure aggregation problem in
federated learning with N users. Then, the proposed
LightSecAgg protocol can simultaneously achieve (1)
privacy guarantee against up to any T colluding users,
and (2) dropout-resiliency guarantee against up to any D
dropped users, for any pair of privacy guarantee T and
dropout-resiliency guarantee D such that T +D < N .

The proof of Theorem 1, which is applicable to both syn-
chronous and asynchronous FL settings, is presented in
Appendix B.
Remark 4. Theorem 1 provides a trade-off between privacy
and dropout-resiliency guarantees, i.e., LightSecAgg can
increase the privacy guarantee by reducing the dropout-
resiliency guarantee and vice versa. As SecAgg (Bonawitz
et al., 2017), LightSecAgg achieves the worst-case
dropout-resiliency guarantee. That is, for any privacy guar-
antee T and the number of dropped users D < N − T ,
LightSecAgg ensures that any set of dropped users of

size D in secure aggregation can be tolerated. Differently,
SecAgg+ (Bell et al., 2020), FastSecAgg (Kadhe et al.,
2020), and TurboAgg (So et al., 2021d) relax the worst-
case constraint to random dropouts and provide a probabilis-
tic dropout-resiliency guarantee, i.e., the desired aggregate-
model can be correctly recovered with high probability.

Remark 5. From the training convergence perspective,
LightSecAgg only adds a quantization step to the local
model updates of the users. The impact of this model quanti-
zation on FL convergence is well studied in the synchronous
FL (Reisizadeh et al., 2020; Elkordy & Avestimehr, 2020).
In the asyncrhonous FL, however, we need to analyze the
convergence of LightSecAgg. We provide this analysis
in the smooth and non-convex setting in Appendix F.4.

5.2 Complexity Analysis of LightSecAgg

We measure the storage cost, communication load, and com-
putational load of LightSecAgg in units of elements or
operations in Fq for a single training round. Recall that U
is a design parameter chosen such that N −D ≥ U > T .

Offline storage cost. Each user i independently generates a
random mask zi of length d. Additionally, each user i stores
a coded mask [z̃j]i of size d

U−T , for j ∈ [N]. Hence, the
total offline storage cost at each user is (1 + N

U−T)d.

Offline communication and computation loads. For each
iteration of secure aggregation, before the local model is
computed, each user prepares offline coded random masks
and distributes them to the other users. Specifically, each
user encodes U local data segments with each of size d

U−T
into N coded segments and distributes each of them to one
of N users. Hence, the offline computational and communi-
cation load of LightSecAgg at each user is O(dN logN

U−T)

and O(dN
U−T), respectively.

Communication load during aggregation. While each
user uploads a masked model of length d, in the phase of
aggregate-model recovery, no matter how many users drop,
each surviving user in U1 sends a coded mask of size d

U−T .
The server is guaranteed to recover the aggregate-model
of the surviving users in U1 after receiving messages from
any U users. The total required communication load at the
server in the phase of mask recovery is therefore U

U−T d.

Computation load during aggregation. The major com-
putational bottleneck of LightSecAgg is the decoding
process to recover

∑
j∈U1 zj at the server. This involves de-

coding a U -dimensional MDS code from U coded symbols,
which can be performed with O(U logU) operations on el-
ements in Fq , hence a total computational load of U logU

U−T d.

We compare the communication and computational com-
plexities of LightSecAgg with baseline protocols. In
particular, we consider the case where secure aggregation

LightSecAgg: A Lightweight and Versatile Design for Secure Aggregation in Federated Learning

Table 1. Complexity comparison between SecAgg, SecAgg+,
and LightSecAgg. Here N is the total number of users, d is the
model size, s is the length of the secret keys as the seeds for PRG
(s� d). In the table, U stands for User and S stands for Server.

SecAgg SecAgg+ LightSecAgg

offline comm. (U) O(sN) O(s logN) O(d)

offline comp. (U) O(dN + sN2) O(d logN + s log2N) O(d logN)

online comm. (U) O(d+ sN) O(d+ s logN) O(d)

online comm. (S) O(dN + sN2) O(dN + sN logN) O(dN)

online comp. (U) O(d) O(d) O(d)

reconstruction (S) O(dN2) O(dN logN) O(d logN)

protocols aim at providing privacy guarantee T = N
2 and

dropout-resiliency guarantee D = pN simultaneously for
some 0 ≤ p < 1

2 . As shown in Table 1, by choosing
U = (1− p)N , LightSecAgg significantly improves the
computational efficiency at the server during aggregation.
SecAgg and SecAgg+ incurs a total computational load
of O(dN2) and O(dN logN), respectively at the server,
while the server complexity of LightSecAgg remains
nearly constant with respect to N . It is expected to sub-
stantially reduce the overall aggregation time for a large
number of users, which is bottlenecked by the server’s
computation in SecAgg (Bonawitz et al., 2017; 2019b).
More detailed discussions, as well as a comparison with an-
other recently proposed secure aggregation protocol (Zhao
& Sun, 2021), which achieves similar server complexity as
LightSecAgg, are carried out in Appendix C.

6 SYSTEM DESIGN AND OPTIMIZATION

Apart from theoretical design and analysis, we have further
designed a FL training system to reduce the overhead of
secure model aggregation and enable realistic evaluation of
LightSecAgg in cross-device FL.

The software architecture is shown in Figure 4. In order to
keep the software architecture lightweight and maintainable,
we do not over-design and only modularize the system as
the foundation layer and the algorithm layer.

The foundation layer (blocks below the dashed line) contains
the communicator and training engine. The communicator
can support multiple communication protocols (PyTorch
RPC (trp, 2021), and gRPC (grp, 2021)), but it provides a
unified communication interface for the algorithmic layer.
In the training engine, in addition to standard PyTorch for
GPU, we also compile the ARM-based PyTorch for embed-
ded edge devices (e.g., Raspberry Pi).

In the algorithm layer, Client Manager calls
Trainer in the foundation layer to perform on-device
training. Client Manager also integrates Client
Encoder to complete the secure aggregation protocol,
which is supported by security primitive APIs. In Server
Manager, Secure Aggregator maintains the cache

ARM-based
PyTorch

Send Thread

Abstract Communication Layer

Receive Thread

Tensor-aware Communicator

Communication

gRPC

Trainer

Standard
PyTorch

Training

On-device
training framework

buffer for client
masked model

Client Manager

multiprocessing (master)

Server Manager

Secure Aggregator

Secure Aggregation Protocol

multiprocessing (slave)

PyTorch RPC

Cache

masked model
Send the updated

global model to clients

1

2

3

4

5

6

 offline phase - encoding

and sharing of local masks

masking and uploading

of local models
upload aggregate

of encoded masks

Model Training

Client Encoder

Reconstruction
Decoder

7

Key Agreement Secret Sharing

MDS Encoding/Decoding

Pseudo Random Generator

…

Security Primitive APIs

Overlapping

Figure 4. Overview of the System Design

for masked models, and once the cache is full, it starts
reconstruction based on aggregated masks uploaded by
clients. The server then synchronizes the updated global
model to clients for the next round of training. In Figure
4, we mark the 7 sequential steps in a single FL round
as circled numbers to clearly show the interplay between
federated training and secure aggregation protocol.

This software architecture has two special designs that can
further reduce the computational and communication over-
head of the secure aggregation protocol.

Parallelization of offline phase and model training. We
note that for all considered protocols, LightSecAgg,
SecAgg, and SecAgg+, the communication and compu-
tation time to generate and exchange the random masks in
the offline phase can be overlapped with model training.
Hence, in our design, we reduce the offline computation and
communication overhead by allowing each user to train the
model and carry out the offline phase simultaneously by run-
ning two parallel processes (multi-threading performs rela-
tively worse due to Python GIL, Global Interpreter Lock), as
shown as purple and red colors in Figure 4. We also demon-
strate the timing diagram of the overlapped implementation
in a single FL training round in Figure 5. We will analyze
its impact on overall acceleration in section 7.2.

Optimized federated training system and communica-
tion APIs via tensor-aware RPC (Remote Procedure
Call). As the yellow blocks in Figure 4 show, we specially
design the sending and receiving queues to accelerate the

LightSecAgg: A Lightweight and Versatile Design for Secure Aggregation in Federated Learning

(a) Non-overlapped (b) Overlapped
Figure 5. The timing diagram of the overlapped implementation in LightSecAgg and SecAgg+ (Bell et al., 2020) for a single FL
training round to train MobileNetV3 (Howard et al., 2019) with CIFAR-100 dataset (Krizhevsky et al., 2009). SecAgg (Bonawitz et al.,
2017) is not included as it takes much longer than other two protocols.

Table 2. Summary of four implemented machine learning tasks and performance gain of LightSecAgg with respect to SecAgg and
SecAgg+. All learning tasks are for image classification. MNIST, FEMNIST and CIFAR-10 are low-resolution datasets, while images
in GLD-23K are high resolution, which cost much longer training time; LR and CNN are shallow models, but MobileNetV3 and
EfficientNet-B0 are much larger models, but they are tailored for efficient edge training and inference.

No. Dataset Model Model Size
Gain

(d) Non-overlapped Overlapped Aggregation-only

1 MNIST (LeCun et al., 1998) Logistic Regression 7,850 6.7×, 2.5× 8.0×, 2.9× 13.0×, 4.1×

2 FEMNIST (Caldas et al., 2018) CNN (McMahan et al., 2017) 1,206,590 11.3×, 3.7× 12.7×, 4.1× 13.2×, 4.2×

3 CIFAR-10 (Krizhevsky et al., 2009) MobileNetV3 (Howard et al., 2019) 3,111,462 7.6×, 2.8× 9.5×, 3.3× 13.1×, 3.9×

4 GLD-23K (Weyand et al., 2020) EfficientNet-B0 (Tan & Le, 2019) 5,288,548 3.3×, 1.6× 3.4×, 1.7× 13.0×, 4.1×

scenario that the device has to be sender and receiver simul-
taneously. As such, the offline phase of LightSecAgg can
further be accelerated by parallelizing the transmission and
reception of [z̃i]j . This design can also speed up the offline
pairwise agreement in SecAgg and SecAgg+. Moreover,
we choose PyTorch RPC (trp, 2021) as the communication
backend rather than gRPC (grp, 2021) and MPI (mpi) be-
cause its tensor-aware communication API can reduce the
latency in scenarios where the communicator is launched
frequently, i.e., each client in the offline mask exchanging
phase needs to distribute N coded segments to N users.

With the above design, we can deploy LightSecAgg in
both embedded IoT devices and AWS EC2 instances. AWS
EC2 instances can also represent a realistic cross-device
setting because, in our experiments, we use AWS EC2
m3.medium instances, which are CPU-based and have
the same hardware configuration as modern smartphones
such as iOS and Android devices. Furthermore, we pack-
age our system as a Docker image to simplify the system
deployment to hundreds of edge devices.

7 EXPERIMENTAL RESULTS

7.1 Setup

Dataset and models. To provide a comprehensive coverage
of realistic FL settings, we train four models over computer
vision datasets of different sizes, summarized in Table 2.

The hyper-parameter settings are provided in Appendix D.

Dropout rate. To model the dropped users, we randomly
select pN users where p is the dropout rate. We con-
sider the worst-case scenario (Bonawitz et al., 2017), where
the selected pN users artificially drop after uploading the
masked model. All three protocols provide privacy guaran-
tee T = N

2 and resiliency for three different dropout rates,
p = 0.1, p = 0.3, and p = 0.5, which are realistic values
according to the industrial observation in real FL system
(Bonawitz et al., 2019a). As we can see that when carefully
selecting devices which may be stable online during the
time period of training, the dropout rate is as high as 10%;
when considering intermittently connected devices, only up
to 10K devices can participate simultaneously when there
are 10M daily active devices (1 : 1000).

Number of users and Communication Bandwidth. In
our experiments, we train up to N = 200 users. The mea-
sured real bandwidth is 320Mb/s. We also consider two
other bandwidth settings of 4G (LTE-A) and 5G cellular
networks as we discuss later.

Baselines. We analyze and compare the performance of
LightSecAgg with two baseline schemes: SecAgg and
SecAgg+ described in Section 3. While there are also
other secure aggregation protocols (e.g., TurboAgg (So
et al., 2021d) and FastSecAgg (Kadhe et al., 2020)), we
use SecAgg and SecAgg+ for our baselines since other

LightSecAgg: A Lightweight and Versatile Design for Secure Aggregation in Federated Learning

(a) Non-overlapped (b) Overlapped
Figure 6. Total running time of LightSecAgg versus the state-of-the-art protocols (SecAgg and SecAgg+) to train CNN (McMahan
et al., 2017) on the FEMNIST dataset (Caldas et al., 2018), as the number of users increases, for various dropout rates.

schemes weaken the privacy guarantees as we discussed in
Related Works part of Section 1.

7.2 Overall Evaluation and Performance Analysis

For the performance analysis, we measure the total running
time for a single round of global iteration which includes
model training and secure aggregation with each protocol
while increasing the number of users N gradually for differ-
ent user dropouts. Our results from training CNN (McMa-
han et al., 2017) on the FEMNIST dataset (Caldas et al.,
2018) are demonstrated in Figure 6. The performance gain
of LightSecAgg with respect to SecAgg and SecAgg+
to train the other models is also provided in Table 2. More
detailed experimental results are provided in Appendix D.
We make the following key observations.

Impact of dropout rate: the total running time of SecAgg
and SecAgg+ increases monotonically with the dropout
rate. This is because their total running time is dominated
by the mask recovery at the server, which increases quadrat-
ically with the number of users.

Non-overlapping v.s. Overlapping: In the non-
overlapped implementation, LightSecAgg provides a
speedup of up to 11.3× and 3.7× over SecAgg and
SecAgg+, respectively, by significantly reducing the
server’s execution time; in the overlapped implementation,
LightSecAgg provides a further speedup of up to 12.7×
and 4.1× over SecAgg and SecAgg+, respectively. This
is due to the fact that LightSecAgg requires more com-
munication and a higher computational cost in the offline
phase than the baseline protocols, and the overlapped imple-
mentation helps to mitigate this extra cost.

Impact of model size: LightSecAgg provides a signifi-
cant speedup of the aggregate-model recovery phase at the
server over the baseline protocols in all considered model
sizes. When training EfficientNet-B0 on GLD-23K dataset,
LightSecAgg provides the smallest speedup in the most
training-intensive task. This is because training time is dom-

inant in this task, and training takes almost the same time in
LightSecAgg and baseline protocols.

Aggregation-only: When comparing the aggregation time
only, the speedup remains the same for various model sizes
as shown in Table 2. We note that speeding up the aggrega-
tion phase by itself is still very important because local train-
ing and aggregation phases are not necessarily happening
one immediately after the other. For example, local training
may be done sporadically and opportunistically throughout
the day (whenever resources are available), while global
aggregation may be postponed to a later time when a large
fraction of the users are done with local training, and they
are available for aggregation (e.g., 2 am).

Impact of U : LightSecAgg incurs the smallest running
time for the case when p = 0.3, which is almost identical
to the case when p = 0.1. Recall that LightSecAgg
can select the design parameter U between T = 0.5N and
N −D = (1 − p)N . Within this range, while increasing
U reduces the size of the symbol to be decoded, it also
increases the complexity of decoding each symbol. The
experimental results suggest that the optimal choices for the
cases of p = 0.1 and p = 0.3 are both U = b0.7Nc, which
leads to a faster execution than when p = 0.5, where U can
only be chosen as U = 0.5N + 1.

Table 3. Performance gain in different bandwidth settings.

Protocols 4G (98 Mbps) 320 Mbps 5G (802 Mbps)

SecAgg 8.5× 12.7× 13.5×

SecAgg+ 2.9× 4.1× 4.4×

Impact of Bandwidth: We have also analyzed the impact
of communication bandwidth at the users. In addition to
the default bandwidth setting used in this section, we have
considered two other edge scenarios: 4G (LTE-A) and 5G
cellular networks using realistic bandwidth settings of 98
and 802 Mbps respectively (Minovski et al., 2021; Scheuner
& Leitner, 2018)). The results are reported in Table 3 for a
single FL round to train CNN over FEMNIST.

LightSecAgg: A Lightweight and Versatile Design for Secure Aggregation in Federated Learning

Table 4. Breakdown of the running time (sec) of LightSecAgg and the state-of-the-art protocols (SecAgg (Bonawitz et al., 2017) and
SecAgg+ (Bell et al., 2020)) to train CNN (McMahan et al., 2017) on the FEMNIST dataset (Caldas et al., 2018) with N = 200 users,
for dropout rate p = 10%, 30%, 50%.

Protocols Phase
Non-overlapped Overlapped

p = 10% p = 30% p = 50% p = 10% p = 30% p = 50%

LightSecAgg

Offline 69.3 69.0 191.2
75.1 74.9 196.9

Training 22.8 22.8 22.8

Uploading 12.4 12.2 21.6 12.6 12.0 21.4

Recovery 40.9 40.7 64.5 40.7 41.0 64.9

Total 145.4 144.7 300.1 123.4 127.3 283.2

SecAgg

Offline 95.6 98.6 102.6
101.2 102.3 101.3

Training 22.8 22.8 22.8

Uploading 10.7 10.9 11.0 10.9 10.8 11.2

Recovery 911.4 1499.2 2087.0 911.2 1501.3 2086.8

Total 1047.5 1631.5 2216.4 1030.3 1614.4 2198.9

SecAgg+

Offline 67.9 68.1 69.2
73.9 73.8 74.2

Training 22.8 22.8 22.8

Uploading 10.7 10.8 10.7 10.7 10.8 10.9

Recovery 379.1 436.7 495.5 378.9 436.7 497.3

Total 470.5 538.4 608.2 463.6 521.3 582.4

7.3 Performance Breakdown

To further investigate the primary gain of LightSecAgg,
we provide the breakdown of total running time for training
CNN (McMahan et al., 2017) on the FEMNIST dataset (Cal-
das et al., 2018) in Table 4. The breakdown of the running
time confirms that the primary gain lies in the complexity
reduction at the server provided by LightSecAgg, espe-
cially for a large number of users.

7.4 Convergence Performance in Asynchronous FL

Figure 7. Accuracy of asynchronous LightSecAgg and
FedBuff on CIFAR-10 dataset (Krizhevsky et al., 2009)
with two strategies for mitigating the staleness: a constant
function s(τ) = 1 named Constant; and a polynomial function
sα(τ) = (1 + τ)−α named Poly where α = 1. The accuracy is
reasonable since we use a variant of LeNet-5 (Xie et al., 2019).

As described in Remark 1, SecAgg and SecAgg+ are
not applicable to asynchronous FL, and hence we cannot
compare the total running time of LightSecAgg with

these baseline secure aggregation protocols. As such, in our
experiments here we instead focus on convergence perfor-
mance of LightSecAgg compared to FedBuff (Nguyen
et al., 2021) to investigate the impact of asynchrony and
quantization in performance. In Figure 7, we demonstrate
that LightSecAgg has almost the same performance as
FedBuff on CIFAR-10 dataset while LightSecAgg in-
cludes quantization noise to protect the privacy of individual
local updates of users. The details of the experiment set-
ting and additional experiments for asynchronous FL are
provided in Appendix F.5.

8 CONCLUSION AND FUTURE WORKS
This paper proposed LightSecAgg, a new approach
for secure aggregation in synchronous and asynchronous
FL. Compared with the state-of-the-art protocols,
LightSecAgg reduces the overhead of model aggre-
gation in FL by leveraging one-shot aggregate-mask
reconstruction of the surviving users, while providing
the same privacy and dropout-resiliency guarantees. In a
realistic FL framework, via extensive empirical results it
is also shown that LightSecAgg can provide substantial
speedup over baseline protocols for training diverse
machine learning models. While we focused on privacy in
this work (under the honest but curious threat model), an
interesting future research is to combine LightSecAgg
with state-of-the-art Byzantine robust aggregation protocols
(e.g., (He et al., 2020d; So et al., 2021b; Elkordy et al.,
2021; Karimireddy et al., 2021)) to also mitigate Byzantine
users while ensuring privacy.

LightSecAgg: A Lightweight and Versatile Design for Secure Aggregation in Federated Learning

REFERENCES

Open mpi: Open source high performance computing.
https://grpc.io/.

gRPC: A high performance, open source universal RPC
framework. https://grpc.io/, 2021.

Pytorch rpc: Distributed deep learning built on tensor-
optimized remote procedure calls. https://
pytorch.org/docs/stable/rpc.html, 2021.

Alistarh, D., Grubic, D., Li, J., Tomioka, R., and Vojnovic,
M. Qsgd: Communication-efficient sgd via gradient quan-
tization and encoding. In Advances in Neural Information
Processing Systems, pp. 1709–1720, 2017.

Asad, M., Moustafa, A., and Ito, T. Fedopt: Towards com-
munication efficiency and privacy preservation in feder-
ated learning. Applied Sciences, 10(8):2864, 2020.

Bell, J. H., Bonawitz, K. A., Gascón, A., Lepoint, T., and
Raykova, M. Secure single-server aggregation with (poly)
logarithmic overhead. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications
Security, pp. 1253–1269, 2020.

Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A.,
McMahan, H. B., Patel, S., Ramage, D., Segal, A.,
and Seth, K. Practical secure aggregation for privacy-
preserving machine learning. In proceedings of the 2017
ACM SIGSAC Conference on Computer and Communica-
tions Security, pp. 1175–1191, 2017.

Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Inger-
man, A., Ivanov, V., Kiddon, C., Konečnỳ, J., Mazzocchi,
S., McMahan, H. B., et al. Towards federated learning at
scale: System design. arXiv preprint arXiv:1902.01046,
2019a.

Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D.,
Ingerman, A., Ivanov, V., Kiddon, C., Konečný, J.,
Mazzocchi, S., McMahan, B., Van Overveldt, T., Petrou,
D., Ramage, D., and Roselander, J. Towards federated
learning at scale: System design. In Proceedings of
Machine Learning and Systems, volume 1, pp. 374–
388, 2019b. URL https://proceedings.
mlsys.org/paper/2019/file/
bd686fd640be98efaae0091fa301e613-Paper.
pdf.

Bonawitz, K., Salehi, F., Konečnỳ, J., McMahan, B.,
and Gruteser, M. Federated learning with autotuned
communication-efficient secure aggregation. In 2019
53rd Asilomar Conference on Signals, Systems, and Com-
puters, pp. 1222–1226. IEEE, 2019c.

Caldas, S., Duddu, S. M. K., Wu, P., Li, T., Konečnỳ, J.,
McMahan, H. B., Smith, V., and Talwalkar, A. Leaf:
A benchmark for federated settings. arXiv preprint
arXiv:1812.01097, 2018.

Chai, Z., Chen, Y., Zhao, L., Cheng, Y., and Rangwala,
H. FedAt: A communication-efficient federated learning
method with asynchronous tiers under non-iid data. arXiv
preprint arXiv:2010.05958, 2020.

Chen, Y., Ning, Y., Slawski, M., and Rangwala, H. Asyn-
chronous online federated learning for edge devices with
non-iid data. In 2020 IEEE International Conference on
Big Data (Big Data), pp. 15–24. IEEE, 2020.

Diffie, W. and Hellman, M. New directions in cryptography.
IEEE transactions on Information Theory, 22(6):644–
654, 1976.

Elkordy, A. R. and Avestimehr, A. S. Secure aggregation
with heterogeneous quantization in federated learning.
arXiv preprint arXiv:2009.14388, 2020.

Elkordy, A. R., Prakash, S., and Avestimehr, A. S. Basil:
A fast and byzantine-resilient approach for decentralized
training. arXiv preprint arXiv:2109.07706, 2021.

Ezzeldin, Y. H., Yan, S., He, C., Ferrara, E., and Aves-
timehr, S. Fairfed: Enabling group fairness in federated
learning. ICML 2021 - International Workshop on Feder-
ated Learning for User Privacy and Data Confidentiality,
2021.

Fallah, A., Mokhtari, A., and Ozdaglar, A. Personalized
federated learning with theoretical guarantees: A model-
agnostic meta-learning approach. Advances in Neural
Information Processing Systems, 33, 2020.

Geiping, J., Bauermeister, H., Dröge, H., and Moeller,
M. Inverting gradients - how easy is it to break privacy
in federated learning? In Larochelle, H., Ranzato,
M., Hadsell, R., Balcan, M. F., and Lin, H. (eds.),
Advances in Neural Information Processing Systems,
volume 33, pp. 16937–16947. Curran Associates,
Inc., 2020. URL https://proceedings.
neurips.cc/paper/2020/file/
c4ede56bbd98819ae6112b20ac6bf145-Paper.
pdf.

He, C., Annavaram, M., and Avestimehr, S. Group knowl-
edge transfer: Federated learning of large cnns at the
edge. NeurIPS 2020 (Advances in Neural Information-
Processing Systems 2020), 2020a.

He, C., Annavaram, M., and Avestimehr, S. Fednas:
Federated deep learning via neural architecture search.
CVPR 2020 Workshop on Neural Architecture Search and
Beyond for Representation Learning, pp. arXiv–2004,
2020b.

https://grpc.io/
https://grpc.io/
https://pytorch.org/docs/stable/rpc.html
https://pytorch.org/docs/stable/rpc.html
https://proceedings.mlsys.org/paper/2019/file/bd686fd640be98efaae0091fa301e613-Paper.pdf
https://proceedings.mlsys.org/paper/2019/file/bd686fd640be98efaae0091fa301e613-Paper.pdf
https://proceedings.mlsys.org/paper/2019/file/bd686fd640be98efaae0091fa301e613-Paper.pdf
https://proceedings.mlsys.org/paper/2019/file/bd686fd640be98efaae0091fa301e613-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c4ede56bbd98819ae6112b20ac6bf145-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c4ede56bbd98819ae6112b20ac6bf145-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c4ede56bbd98819ae6112b20ac6bf145-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c4ede56bbd98819ae6112b20ac6bf145-Paper.pdf

LightSecAgg: A Lightweight and Versatile Design for Secure Aggregation in Federated Learning

He, C., Tan, C., Tang, H., Qiu, S., and Liu, J. Central server
free federated learning over single-sided trust social net-
works. NeurIPS 2020 (Advances in Neural Information
Processing Systems 2020) - Federated Learning Work-
shop, 2020c.

He, C., Balasubramanian, K., Ceyani, E., Yang, C., Xie,
H., Sun, L., He, L., Yang, L., Yu, P. S., Rong, Y., et al.
Fedgraphnn: A federated learning system and bench-
mark for graph neural networks. DPML@ICLR 2021 and
GNNSys@MLSys 2021, 2021a.

He, C., Ceyani, E., Balasubramanian, K., Annavaram, M.,
and Avestimehr, S. Spreadgnn: Serverless multi-task fed-
erated learning for graph neural networks. International
Workshop on Federated Learning for User Privacy and
Data Confidentiality in Conjunction with ICML 2021 (FL-
ICML’21) and Deep Learning on Graphs: Method and
Applications with KDD 2021 (DLG-KDD’21), 2021b.

He, C., Li, S., Soltanolkotabi, M., and Avestimehr, S.
Pipetransformer: Automated elastic pipelining for dis-
tributed training of large-scale models. In Interna-
tional Conference on Machine Learning, pp. 4150–4159.
PMLR, 2021c.

He, C., Shah, A. D., Tang, Z., Sivashunmugam, D.
F. N., Bhogaraju, K., Shimpi, M., Shen, L., Chu, X.,
Soltanolkotabi, M., and Avestimehr, S. Fedcv: A fed-
erated learning framework for diverse computer vision
tasks. arXiv preprint arXiv:2111.11066, 2021d.

He, C., Yang, Z., Mushtaq, E., Lee, S., Soltanolkotabi,
M., and Avestimehr, S. Ssfl: Tackling label deficiency
in federated learning via personalized self-supervision.
arXiv preprint arXiv:2110.02470, 2021e.

He, L., Karimireddy, S. P., and Jaggi, M. Secure
byzantine-robust machine learning. arXiv preprint
arXiv:2006.04747, 2020d.

Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B.,
Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V.,
et al. Searching for mobilenetv3. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 1314–1324, 2019.

Kadhe, S., Rajaraman, N., Koyluoglu, O. O., and Ram-
chandran, K. Fastsecagg: Scalable secure aggregation
for privacy-preserving federated learning. arXiv preprint
arXiv:2009.11248, 2020.

Karimireddy, S. P., He, L., and Jaggi, M. Learning from
history for byzantine robust optimization. In Interna-
tional Conference on Machine Learning, pp. 5311–5319.
PMLR, 2021.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A.,
and Smith, V. Federated optimization in heterogeneous
networks. arXiv preprint arXiv:1812.06127, 2018.

Li, T., Hu, S., Beirami, A., and Smith, V. Ditto: Fair and
robust federated learning through personalization. arXiv:
2012.04221, 2020.

Li, X., Huang, K., Yang, W., Wang, S., and Zhang, Z. On the
convergence of fedavg on non-iid data. In International
Conference on Learning Representations, 2019.

Liang, J., Li, S., Jiang, W., Cao, B., and He, C. Omnilytics:
A blockchain-based secure data market for decentralized
machine learning. ICML 2021 - International Workshop
on Federated Learning for User Privacy and Data Confi-
dentiality, 2021.

Lin, B. Y., He, C., Zeng, Z., Wang, H., Huang, Y.,
Soltanolkotabi, M., Ren, X., and Avestimehr, S. Fednlp:
A research platform for federated learning in natural
language processing. arXiv preprint arXiv:2104.08815,
2021.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In Artificial Intelli-
gence and Statistics, pp. 1273–1282. PMLR, 2017.

McMahan, H. B. et al. Advances and open problems in
federated learning. Foundations and Trends® in Machine
Learning, 14(1), 2021.

Minovski, D., Ogren, N., Ahlund, C., and Mitra, K.
Throughput prediction using machine learning in lte and
5g networks. IEEE Transactions on Mobile Computing,
2021.

Mushtaq, E., He, C., Ding, J., and Avestimehr, S. Spider:
Searching personalized neural architecture for federated
learning. arXiv preprint arXiv:2112.13939, 2021.

Nguyen, J., Malik, K., Zhan, H., Yousefpour, A., Rabbat,
M., Esmaeili, M. M., and Huba, D. Federated learning
with buffered asynchronous aggregation. arXiv preprint
arXiv:2106.06639, 2021.

Reddi, S., Charles, Z., Zaheer, M., Garrett, Z., Rush, K.,
Konečnỳ, J., Kumar, S., and McMahan, H. B. Adaptive
federated optimization. arXiv preprint arXiv:2003.00295,
2020.

LightSecAgg: A Lightweight and Versatile Design for Secure Aggregation in Federated Learning

Reisizadeh, A., Mokhtari, A., Hassani, H., Jadbabaie, A.,
and Pedarsani, R. Fedpaq: A communication-efficient
federated learning method with periodic averaging and
quantization. In International Conference on Artificial
Intelligence and Statistics, pp. 2021–2031. PMLR, 2020.

Roth, R. M. and Lempel, A. On mds codes via cauchy
matrices. IEEE transactions on information theory, 35
(6):1314–1319, 1989.

Scheuner, J. and Leitner, P. A cloud benchmark suite com-
bining micro and applications benchmarks. In Compan-
ion of the 2018 ACM/SPEC International Conference on
Performance Engineering, pp. 161–166, 2018.

Shamir, A. How to share a secret. Communications of the
ACM, 22(11):612–613, 1979.

Shlezinger, N., Chen, M., Eldar, Y. C., Poor, H. V., and Cui,
S. Uveqfed: Universal vector quantization for federated
learning. IEEE Transactions on Signal Processing, 69:
500–514, 2020.

So, J., Ali, R. E., Guler, B., Jiao, J., and Avestimehr, S.
Securing secure aggregation: Mitigating multi-round
privacy leakage in federated learning. arXiv preprint
arXiv:2106.03328, 2021a.

So, J., Güler, B., and Avestimehr, A. S. Byzantine-resilient
secure federated learning. IEEE Journal on Selected
Areas in Communications, 39(7):2168–2181, 2021b.

So, J., Güler, B., and Avestimehr, A. S. Codedprivateml:
A fast and privacy-preserving framework for distributed
machine learning. IEEE Journal on Selected Areas in
Information Theory, 2(1):441–451, 2021c.

So, J., Güler, B., and Avestimehr, A. S. Turbo-aggregate:
Breaking the quadratic aggregation barrier in secure fed-
erated learning. IEEE Journal on Selected Areas in Infor-
mation Theory, 2(1):479–489, 2021d.

T. Dinh, C., Tran, N., and Nguyen, J. Personalized
federated learning with moreau envelopes. In Larochelle,
H., Ranzato, M., Hadsell, R., Balcan, M. F., and Lin,
H. (eds.), Advances in Neural Information Processing
Systems, volume 33, pp. 21394–21405. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.
neurips.cc/paper/2020/file/
f4f1f13c8289ac1b1ee0ff176b56fc60-Paper.
pdf.

Tan, M. and Le, Q. Efficientnet: Rethinking model scaling
for convolutional neural networks. In International Con-
ference on Machine Learning, pp. 6105–6114. PMLR,
2019.

Tang, T., Ali, R. E., Hashemi, H., Gangwani, T., Avestimehr,
S., and Annavaram, M. Verifiable coded computing: To-
wards fast, secure and private distributed machine learn-
ing. arXiv preprint arXiv:2107.12958, 2021.

Truex, S., Liu, L., Chow, K.-H., Gursoy, M. E., and Wei,
W. Ldp-fed: Federated learning with local differential
privacy. In Proceedings of the Third ACM International
Workshop on Edge Systems, Analytics and Networking,
pp. 61–66, 2020.

van Dijk, M., Nguyen, N. V., Nguyen, T. N., Nguyen, L. M.,
Tran-Dinh, Q., and Nguyen, P. H. Asynchronous feder-
ated learning with reduced number of rounds and with
differential privacy from less aggregated gaussian noise.
arXiv preprint arXiv:2007.09208, 2020.

Wang, J., Liu, Q., Liang, H., Joshi, G., and Poor, H. V. Tack-
ling the objective inconsistency problem in heterogeneous
federated optimization. arXiv preprint arXiv:2007.07481,
2020.

Wang, J., Charles, Z., Xu, Z., Joshi, G., McMahan, H. B.,
Al-Shedivat, M., Andrew, G., Avestimehr, S., Daly, K.,
Data, D., et al. A field guide to federated optimization.
arXiv preprint arXiv:2107.06917, 2021.

Wang, Z., Song, M., Zhang, Z., Song, Y., Wang, Q., and
Qi, H. Beyond inferring class representatives: User-level
privacy leakage from federated learning. In IEEE INFO-
COM 2019-IEEE Conference on Computer Communica-
tions, pp. 2512–2520. IEEE, 2019.

Weyand, T., Araujo, A., Cao, B., and Sim, J. Google land-
marks dataset v2-a large-scale benchmark for instance-
level recognition and retrieval. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 2575–2584, 2020.

Xie, C., Koyejo, S., and Gupta, I. Asynchronous federated
optimization. arXiv preprint arXiv:1903.03934, 2019.

Yao, A. C. Protocols for secure computations. In 23rd
annual symposium on foundations of computer science
(sfcs 1982), pp. 160–164. IEEE, 1982.

Yu, Q., Li, S., Raviv, N., Kalan, S. M. M., Soltanolkotabi,
M., and Avestimehr, S. A. Lagrange coded computing:
Optimal design for resiliency, security, and privacy. In
The 22nd International Conference on Artificial Intelli-
gence and Statistics, pp. 1215–1225. PMLR, 2019.

Zhang, T., He, C., Ma, T., Gao, L., Ma, M., and Aves-
timehr, A. S. Federated learning for internet of things.
Proceedings of the 19th ACM Conference on Embedded
Networked Sensor Systems, 2021a.

https://proceedings.neurips.cc/paper/2020/file/f4f1f13c8289ac1b1ee0ff176b56fc60-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f4f1f13c8289ac1b1ee0ff176b56fc60-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f4f1f13c8289ac1b1ee0ff176b56fc60-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f4f1f13c8289ac1b1ee0ff176b56fc60-Paper.pdf

LightSecAgg: A Lightweight and Versatile Design for Secure Aggregation in Federated Learning

Zhang, T., He, C., Ma, T., Gao, L., Ma, M., and Aves-
timehr, A. S. Federated learning for internet of things.
Proceedings of the 19th ACM Conference on Embedded
Networked Sensor Systems, 2021b.

Zhao, Y. and Sun, H. Information theoretic secure aggrega-
tion with user dropouts. arXiv preprint arXiv:2101.07750,
2021.

Zhu, L. and Han, S. Deep leakage from gradients. In
Federated Learning, pp. 17–31. Springer, 2020.

LightSecAgg: A Lightweight and Versatile Design for Secure Aggregation in Federated Learning

APPENDIX

A PSEUDO CODE OF LIGHTSECAGG

Algorithm 1 The LightSecAgg protocol
Input: T (privacy guarantee), D (dropout-resiliency guarantee), U (target number of surviving
users)

1: Server Executes:
2: // phase: offline encoding and sharing of local masks
3: for each user i = 1, 2, . . . , N in parallel do
4: zi ← randomly picks from Fdq
5: [zi]1, . . . , [zi]U−T ← obtained by partitioning zi to U − T pieces

6: [ni]U−T+1, . . . , [ni]U ← randomly picks from F
d

U−T
q

7: {[z̃i]j}j∈[N] ← obtained by encoding [zi]k’s and [ni]k’s using (5)
8: sends encoded mask [z̃i]j to user j ∈ [N]\{i}
9: receives encoded mask [z̃j]i from user j ∈ [N]\{i}

10: end for
11: // phase: masking and uploading of local models
12: for each user i = 1, 2, . . . , N in parallel do
13: // user i obtains xi after the local update
14: x̃i ← xi + zi // masks the local model
15: uploads masked model x̃i to the server
16: end for
17: identifies set of surviving users U1 ⊆ [N]
18: gathers masked models x̃i from user i ∈ U1
19: // phase: one-shot aggregate-model recovery
20: for each user i ∈ U1 in parallel do
21: computes aggregated encoded masks

∑
j∈U1 [z̃j]i

22: uploads aggregated encoded masks
∑
j∈U1 [z̃j]i to the server

23: end for
24: collects U messages of aggregated encoded masks

∑
j∈U1 [z̃j]i from user i ∈ U1

25: // recovers the aggregated-mask
26:

∑
i∈U1 zi ← obtained by decoding the received U messages

27: // recovers the aggregate-model for the surviving users
28:

∑
i∈U1 xi ←

∑
i∈U1 x̃i −

∑
i∈U1 zi

B PROOF OF THEOREM 1
We prove the dropout-resiliency guarantee and the privacy guarantee for a single FL training round. As all randomness is
independently generated across each round, one can extend the dropout-resiliency guarantee and the privacy guarantee for
all training rounds for both synchronous and asynchronous FL setting. For simplicity, round index t is omitted in this proof.

For any pair of privacy guarantee T and dropout-resiliency guarantee D such that T +D < N , we select an arbitrary U
such that N −D ≥ U > T . In the following, we show that LightSecAgg with chosen design parameters T , D and U
can simultaneously achieve (1) privacy guarantee against up to any T colluding users, and (2) dropout-resiliency guarantee
against up to any D dropped users. We denote the concatenation of {[ni]k}k∈U−T+1,...,U by ni for i ∈ [N].

(Dropout-resiliency guarantee) We now focus on the phase of one-shot aggregate-model recovery. Since each user encodes
its sub-masks by the same MDS matrix W , each

∑
i∈U1 [z̃i]j is an encoded version of

∑
i∈U1 [zi]k for k ∈ [U − T] and∑

i∈U1 [ni]k for k ∈ {U − T + 1, . . . , U} as follows:∑
i∈U1

[z̃i]j = (
∑
i∈U1

[zi]1, . . . ,
∑
i∈U1

[zi]U−T ,
∑
i∈U1

[ni]U−T+1, . . . ,
∑
i∈U1

[ni]U) ·Wj , (6)

where Wj is the j’th column of W .

LightSecAgg: A Lightweight and Versatile Design for Secure Aggregation in Federated Learning

Since N −D ≥ U , there are at least U surviving users after user dropouts. Thus, the server is able to recover
∑
i∈U1 [zi]k

for k ∈ [U − T] via MDS decoding after receiving a set of any U messages from the surviving users. Recall that [zi]k’s are
sub-masks of zi, so the server can successfully recover

∑
i∈U1 zi. Lastly, the server recovers the aggregate-model for the set

of surviving users U1 by
∑
i∈U1 xi =

∑
i∈U1 x̃i −

∑
i∈U1 zi =

∑
i∈U1(xi + zi)−

∑
i∈U1 zi.

(Privacy guarantee) We first present Lemma 1, whose proof is provided in Appendix E.

Lemma 1. For any T ⊆ [N] of size T and any U1 ⊆ [N], |U1| ≥ U such that U > T , if the random masks [ni]k’s are
jointly uniformly random, we have

I({zi}i∈[N]\T ; {zi}i∈T , {[z̃j]i}j∈[N],i∈T) = 0. (7)

We consider the worst-case scenario in which all the messages sent from the users are received by the server during the
execution of LightSecAgg, i.e., the users identified as dropped are delayed. Thus, the server receives xi + zi from user
i ∈ [N] and

∑
j∈U1 [z̃j]i from user i ∈ U1. We now show that LightSecAgg provides privacy guarantee T , i.e., for an

arbitrary set of colluding users T of size T , the following holds,

I

{xi}i∈[N]; {xi + zi}i∈[N], {
∑
j∈U1

[z̃j]i}i∈U1

∣∣∣∣∣ ∑
i∈U1

xi, {xi}i∈T , {zi}i∈T , {[z̃j]i}j∈[N],i∈T

 = 0. (8)

We prove it as follows:

I

{xi}i∈[N]; {xi + zi}i∈[N], {
∑
j∈U1

[z̃j]i}i∈U1

∣∣∣∣∣ ∑
i∈U1

xi, {xi}i∈T , {zi}i∈T , {[z̃j]i}j∈[N],i∈T

 (9)

=H

{xi + zi}i∈[N], {
∑
j∈U1

[z̃j]i}i∈U1

∣∣∣∣∣ ∑
i∈U1

xi, {xi}i∈T , {zi}i∈T , {[z̃j]i}j∈[N],i∈T


−H

{xi + zi}i∈[N], {
∑
j∈U1

[z̃j]i}i∈U1

∣∣∣∣∣{xi}i∈[N], {zi}i∈T , {[z̃j]i}j∈[N],i∈T

 (10)

=H

(
{xi + zi}i∈[N],

∑
i∈U1

zi,
∑
i∈U1

ni

∣∣∣∣∣ ∑
i∈U1

xi, {xi}i∈T , {zi}i∈T , {[z̃j]i}j∈[N],i∈T

)

−H

(
{zi}i∈[N],

∑
i∈U1

zi,
∑
i∈U1

ni

∣∣∣∣∣{xi}i∈[N], {zi}i∈T , {[z̃j]i}j∈[N],i∈T

)
(11)

=H

(
{xi + zi}i∈[N]\T ,

∑
i∈U1

zi,
∑
i∈U1

ni

∣∣∣∣∣ ∑
i∈U1

xi, {xi}i∈T , {zi}i∈T , {[z̃j]i}j∈[N],i∈T

)

−H

(
{zi}i∈[N],

∑
i∈U1

zi,
∑
i∈U1

ni

∣∣∣∣∣{xi}i∈[N], {zi}i∈T , {[z̃j]i}j∈[N],i∈T

)
(12)

=H

(
{xi + zi}i∈[N]\T

∣∣∣∣∣ ∑
i∈U1

xi, {xi}i∈T , {zi}i∈T , {[z̃j]i}j∈[N],i∈T

)

+H

(∑
i∈U1

zi,
∑
i∈U1

ni

∣∣∣∣∣{xi + zi}i∈[N]\T ,
∑
i∈U1

xi, {xi}i∈T , {zi}i∈T , {[z̃j]i}j∈[N],i∈T

)

−H

(
{zi}i∈[N]

∣∣∣∣∣{xi}i∈[N], {zi}i∈T , {[z̃j]i}j∈[N],i∈T

)

−H

(∑
i∈U1

zi,
∑
i∈U1

ni

∣∣∣∣∣{zi}i∈[N], {xi}i∈[N], {zi}i∈T , {[z̃j]i}j∈[N],i∈T

)
(13)

LightSecAgg: A Lightweight and Versatile Design for Secure Aggregation in Federated Learning

=H

(
{xi + zi}i∈[N]\T

∣∣∣∣∣ ∑
i∈U1

xi, {xi}i∈T , {zi}i∈T , {[z̃j]i}j∈[N],i∈T

)

+H

(∑
i∈U1

ni

∣∣∣∣∣{xi + zi}i∈[N]\T ,
∑
i∈U1

xi, {xi}i∈T , {zi}i∈T , {[z̃j]i}j∈[N],i∈T

)

−H

(
{zi}i∈[N]\T

∣∣∣∣∣{zi}i∈T , {[z̃j]i}j∈[N],i∈T

)
−H

(∑
i∈U1

ni

∣∣∣∣∣{zi}i∈[N], {[z̃j]i}j∈[N],i∈T

)
(14)

=H

(
{xi + zi}i∈[N]\T

∣∣∣∣∣ ∑
i∈U1

xi, {xi}i∈T , {zi}i∈T , {[z̃j]i}j∈[N],i∈T

)

+H

(∑
i∈U1

ni

∣∣∣∣∣{xi + zi}i∈[N]\T ,
∑
i∈U1

xi, {xi}i∈T , {zi}i∈T , {[z̃j]i}j∈[N],i∈T

)

−H
(
{zi}i∈[N]\T

)
−H

(∑
i∈U1

ni

∣∣∣∣∣{zi}i∈[N], {[z̃j]i}j∈[N],i∈T

)
(15)

=0, (16)

where (11) follows from the fact that {
∑
j∈U1 [z̃j]i}i∈U1 is invertible to

∑
i∈U1 zi and

∑
i∈U1 ni. Equation (12) holds since

{xi + zi}i∈T is a deterministic function of {zi}i∈T and {xi}i∈T . Equation (13) follows from the chain rule. In equation
(14), the second term follows from the fact that

∑
i∈U1 zi is a deterministic function of {xi + zi}i∈[N]\T ,

∑
i∈U1 xi,

{xi}i∈T ,{zi}i∈T ; the third term follows from the independence of xi’s and zi’s; the last term follows from the fact that∑
i∈U1 zi is a deterministic function of {zi}i∈[N] and the independence of ni’s and xi’s. In equation (15), the third term

follows from Lemma 1. Equation (16) follows from 1)
∑
i∈U1 ni is a function of {xi + zi}i∈[N]\T ,

∑
i∈U1 xi ,{xi}i∈T ,

{zi}i∈T and {[z̃j]i}j∈[N],i∈T ; 2)
∑
i∈U1 ni is a function of {zi}i∈U1 {[z̃j]i}j∈U1,i∈T ; 3) zi is uniformly distributed and

hence it has the maximum entropy in Fdq , combined with the non-negativity of mutual information.

C DISCUSSION

As shown in Table 5, compared with the SecAgg protocol (Bonawitz et al., 2017), LightSecAgg significantly improves
the computational efficiency at the server during aggregation. While SecAgg requires the server to retrieve T + 1 secret
shares of a secret key for each of the N users, and to compute a single PRG function if the user survives, or N − 1 PRG
functions to recover N − 1 pairwise masks if the user drops off, yielding a total computational load of O(N2d) at the server.
In contrast, as we have analyzed in Section 5.2, for U = O(N), LightSecAgg incurs an almost constant (O(d logN))
computational load at the server. This admits a scalable design and is expected to achieve a much faster end-to-end execution
for a large number of users, given the fact that the overall execution time is dominated by the server’s computation in
SecAgg (Bonawitz et al., 2017; 2019b). SecAgg has a smaller storage overhead than LightSecAgg as secret shares
of keys with small sizes (e.g., as small as an integer) are stored, and the model size d is much larger than the number of
users N in typical FL scenarios. This effect will also allow SecAgg to have a smaller communication load in the phase of
aggregate-model recovery. Finally, we would like to note that another advantage of LightSecAgg over SecAgg is the
reduced dependence on cryptographic primitives such as public key infrastructure and key agreement mechanism, which
further simplifies the implementation of the protocol. SecAgg+ (Bell et al., 2020) improves both communication and
computational load of SecAgg by considering a sparse random graph of degree O(logN), and the complexity is reduced
by factor of O(N

logN). However, SecAgg+ still incurs O(dN logN) computational load at the server, which is much larger
than O(d logN) computational load at the server in LightSecAgg when U = O(N).

Compared with a recently proposed secure aggregation protocol in (Zhao & Sun, 2021), LightSecAgg achieves similar
complexities in communication and computation during the aggregation process. The main advantage of LightSecAgg
over the scheme in (Zhao & Sun, 2021) lies in how the randomness is generated and stored offline at the users and the
resulting reduced storage cost. For the scheme in (Zhao & Sun, 2021), all randomness are generated at some external trusted

party, and for each subset of U1 of size |U1| ≥ U the trusted party needs to generate T random symbols in F
d

U−T
q , which

account to a total amount of randomness that increases exponentially with N . In sharp contrast, LightSecAgg does
not require a trusted third party, and each user generates locally a set of T random symbols. It significantly improves the

LightSecAgg: A Lightweight and Versatile Design for Secure Aggregation in Federated Learning

Table 5. Complexity comparison between SecAgg (Bonawitz et al., 2017), SecAgg+ (Bell et al., 2020), and LightSecAgg. Here
N is the total number of users. The parameters d and s respectively represent the model size and the length of the secret keys as the
seeds for PRG, where s� d. LightSecAgg and SecAgg provide worst-case privacy guarantee T and dropout-resiliency guarantee D
for any T and D as long as T + D < N . SecAgg+ provides probabilistic privacy guarantee T and dropout-resiliency guarantee D.
LightSecAgg selects three design parameters T , D and U such that T < U ≤ N −D.

SecAgg SecAgg+ LightSecAgg

Offline storage per user O(d+Ns) O(d+ s logN) O(d+ N
U−T d)

Offline communication per user O(sN) O(s logN) O(d N
U−T)

Offline computation per user O(dN + sN2) O(d logN + s log2N) O(dN logN
U−T)

Online communication per user O(d+ sN) O(d+ s logN) O(d+ d
U−T)

Online communication at server O(dN + sN2) O(dN + sN logN) O(dN + d U
U−T)

Online computation per user O(d) O(d) O(d+ d U
U−T)

Decoding complexity at server O(sN2) O(sN log2N) O(dU logU
U−T)

PRG complexity at server O(dN2) O(dN logN) −

Table 6. Comparison of storage cost (in the number of symbols in F
d

U−T
q) between protocol in (Zhao & Sun, 2021) and LightSecAgg.

Protocol in (Zhao & Sun, 2021) LightSecAgg

Total amount of randomness needed N(U − T) + T
∑N
u=U

(
N
u

)
NU

Offline storage per user U − T +
∑N
u=U

(
N
u

)
u
N U − T +N

practicality of LightSecAgg to maintain model security, and further reduces the total amount of needed randomness to
scale linearly with N . Consequently, the local offline storage of each user in LightSecAgg scales linearly with N , as
opposed to scaling exponentially in (Zhao & Sun, 2021). We compare the amount of generated randomness and the offline
storage cost between the scheme in (Zhao & Sun, 2021) and LightSecAgg in Table 6.

D EXPERIMENTAL DETAILS

In this section, we provide experimental details of Section 7. Aside from the results of training CNN (McMahan et al.,
2017) on the FEMNIST dataset (Caldas et al., 2018) as shown in Figure 6, we also demonstrate the total running time
of LightSecAgg versus two baseline protocols SecAgg (Bonawitz et al., 2017) and SecAgg+ (Bell et al., 2020) to
train logistic regression on the MNIST dataset (LeCun et al., 1998), MobileNetV3 (Howard et al., 2019) on the CIFAR-10
dataset (Krizhevsky et al., 2009), and EfficientNet-B0 (Tan & Le, 2019) on the GLD23k dataset (Weyand et al., 2020) in
Figure 8, Figure 9, and Figure 10, respectively. For all considered FL training tasks, each user locally trains its model with
E = 5 local epochs, before masking and uploading its model. We can observe that LightSecAgg provides significant
speedup for all considered FL training tasks in the running time over SecAgg and SecAgg+.

LightSecAgg: A Lightweight and Versatile Design for Secure Aggregation in Federated Learning

(a) Non-overlapped (b) Overlapped

Figure 8. Total running time of LightSecAgg versus the state-of-the-art protocols (SecAgg (Bonawitz et al., 2017) and SecAgg+
(Bell et al., 2020)) to train logistic regression on the MNIST (LeCun et al., 1998) with an increasing number of users, for various dropout
rate.

(a) Non-overlapped (b) Overlapped

Figure 9. Total running time of LightSecAgg versus the state-of-the-art protocols (SecAgg (Bonawitz et al., 2017) and SecAgg+
(Bell et al., 2020)) to train MobileNetV3 (Howard et al., 2019) on the CIFAR-10 (Krizhevsky et al., 2009) with an increasing number of
users, for various dropout rate.

(a) Non-overlapped (b) Overlapped

Figure 10. Total running time of LightSecAgg versus the state-of-the-art protocols (SecAgg (Bonawitz et al., 2017) and
SecAgg+ (Bell et al., 2020)) to train EfficientNet-B0 (Tan & Le, 2019) on the GLD23k (Weyand et al., 2020) with an increasing
number of users, for various dropout rate.

LightSecAgg: A Lightweight and Versatile Design for Secure Aggregation in Federated Learning

E PROOF OF LEMMA 1
We show that for an arbitrary set of colluding users T of size T , we have

I({zi}i∈[N]\T ; {zi}i∈T , {[z̃j]i}j∈[N],i∈T) = 0. (17)

The T -private MDS matrix used in LightSecAgg guarantees I(zi; {[z̃i]j}j∈T) = 0. Thus,

I({zi}i∈[N]\T ; {zi}i∈T , {[z̃j]i}j∈[N],i∈T) (18)
=H({zi}i∈T , {[z̃j]i}j∈[N],i∈T)−H({zi}i∈T , {[z̃j]i}j∈[N],i∈T |{zi}i∈[N]\T) (19)
=H({zi}i∈T , {[z̃j]i}j∈[N],i∈T)−H({zi}i∈T |{zi}i∈[N]\T)−H({[z̃j]i}j∈[N],i∈T |{zi}i∈[N]) (20)
=H({zi}i∈T , {[z̃j]i}j∈[N],i∈T)−H({zi}i∈T)−H({[z̃j]i}j∈[N],i∈T) (21)
=0, (22)

where equation (20) follows from the chain rule. Equation (21) follows from the independence of zi’s and
I(zi; {[z̃i]j}j∈T) = 0. Equation (22) follows from the fact that joint entropy is less than or equal to the sum of the
individual entropies, combined with the non-negativity of mutual information.

F APPLICATION OF LIGHTSECAGG TO ASYNCHRONOUS FL
In this Appendix, we provide a brief overview of asynchronous FL in Appendix F.1. Then, we illustrate the incompatibility
of the conventional secure aggregation protocols, SecAgg and SecAgg+, with the asynchronous FL in Appendix F.2.
Later on, in Appendix F.3, we demonstrate how LightSecAgg can be applied to the asynchronous FL setting to protect
the privacy of individual updates.

F.1 General Description of Asynchronous FL

We consider the general asynchronous FL setting where the updates of the users are not synchronized while the goal is the
same as synchronous FL, to collaboratively learn a global model x ∈ Rd, using the local datasets of N users without sharing
them. This problem is formulated as minimizing a global loss function as follows

min
x∈Rd

F (x) =

N∑
i=1

piFi(x), (23)

where Fi is the local loss function of user i ∈ [N] and pi ≥ 0 are the weight parameters that indicate the relative impact of
the users and are selected such that

∑N
i=1 pi = 1. This problem is solved iteratively in asynchronous FL.

At round t, each user locally trains the model by carrying out E ≥ 1 local SGD steps. When the local update is done, user i
sends the difference between the downloaded global model and updated local model to the server. The local update of user i
sent to the server at round t is given by

∆
(t;ti)
i = x(ti) − x

(E;ti)
i , (24)

where ti is the latest round index when the global model is downloaded by user i and t is the round index when the local
update is sent to the server, hence the staleness of user i is given by τi = t− ti. x(E;ti)

i denotes the local model after E
local SGD steps and the local model at user i is updated as

x
(e;ti)
i = x

(e−1;ti)
i − ηlgi(x(e−1;ti)

i ; ξi) (25)

for e = 1, . . . , E, where x
(0;ti)
i = x(ti), ηl denotes learning rate of the local updates. gi(x; ξi) denotes the stochastic

gradient with respect to the random sampling ξi on user i, and we assume Eξi [gi(x; ξi)] = ∇Fi(x) for all x ∈ Rd where Fi
is the local loss function of user i defined in (23). When the server receives ∆

(t;ti)
i , the global model at the server is updated

as
x(t+1) = x(t) − ηg∑

i∈S(t) s(t− ti)
∑
i∈S(t)

s(t− ti)∆(t;ti)
i , (26)

where S(t) is an index set of the users whose local models are sent to the server at round t and ηg is the learning
rate of the global updates. s(τ) is a function that compensates for the staleness satisfying s(0) = 1 and decreases

LightSecAgg: A Lightweight and Versatile Design for Secure Aggregation in Federated Learning

monotonically as τ increases. There are many functions that satisfy these two properties and we consider a polynomial
function sα(τ) = (τ + 1)−α as it shows similar or better performance than the other functions e.g., Hinge or Constant stale
function (Xie et al., 2019).

As discussed in Section 4.2, we focus on extending LightSecAgg to the buffered asynchronous FL setting of
FedBuff (Nguyen et al., 2021), where the server stores the local updates in buffer of size K and updates the global model
once the buffer is full. This is a special case of the general asynchronous FL setting described above, where |S(t)| = K for
all t. In principle the same approach for generalizing LightSecAgg can be used in other asynchronous FL settings where
|S(t)| changes over time, however since the convergence of FL in those settings are yet not understood, we do not consider
them in the paper.

F.2 Incompatibility of SecAgg and SecAgg+ with Asynchronous FL

As described in Section 3, SecAgg (Bonawitz et al., 2017) and SecAgg+ (Bell et al., 2020) are designed for synchronous
FL. At round t, each pair of users i, j ∈ [N] agree on a pairwise random-seed a(t)i,j , and generate a random vector by running

a PRG based on the random seed of a(t)i,j to mask the local update. This additive structure has the unique property that these

pairwise random vectors cancel out when the server aggregates the masked models because user i(< j) adds PRG(a
(t)
i,j) to

x
(t)
i and user j(> i) subtracts PRG(a

(t)
i,j) from x

(t)
j .

In asynchronous FL, however, the cancellation of the pairwise random masks based on the key agreement protocol is not
guaranteed due to the mismatch in staleness between the users. Specifically, at round t, user i ∈ S(t) sends the masked
model y(t;ti)

i to the server that is given by

y
(t;ti)
i = ∆

(t;ti)
i + PRG

(
b
(ti)
i

)
+
∑
j:i<j

PRG
(
a
(ti)
i,j

)
−
∑
j:i>j

PRG
(
a
(ti)
j,i

)
, (27)

where ∆
(t;ti)
i is the local update defined in (24). When ti 6= tj , the pairwise random vectors in y

(t;ti)
i and y

(t;tj)
j are not

canceled out as a(ti)i,j 6= a
(tj)
i,j . We note that the identity of the staleness of each user is not known a priori, hence each pair of

users cannot use the same pairwise random-seed.

F.3 Asynchronous LightSecAgg

We now demonstrate how LightSecAgg can be applied to the asynchronous FL setting where the server stores each local
update in a buffer of size K and updates the global model by aggregating the stored updates when the buffer is full. Our
key intuition is to encode the local masks in a way that the server can recover the aggregate of masks from the encoded
masks via a one-shot computation even though the masks are generated in different training rounds. The asynchronous
LightSecAgg protocol also consists of three phases with three design parameters D,T, U which are defined in the same
way as the synchronous LightSecAgg.

Synchronous and asynchronous LightSecAgg have two key differences: (1) In asynchronous FL, the users share the
encoded masks with the time stamp in the first phase to figure out which encoded masks should be aggregated for the
reconstruction of aggregate of masks in the third phase. Due to the commutative property of coding and addition, the server
can reconstruct the aggregate of masks even though the masks are generated in different training rounds; (2) In asynchronous
FL, the server compensates the staleness of the local updates. This is challenging as this compensation should be carried out
over the masked model in the finite field to provide the privacy guarantee while the conventional compensation functions
have real numbers as outputs (Xie et al., 2019; Nguyen et al., 2021).

We now describe the three phases in detail.

F.3.1 Offline Encoding and Sharing of Local Masks

User i generates z(ti)i uniformly at random from the finite field Fdq , where ti is the global round index when user i downloads

the global model from the server. The mask z
(ti)
i is partitioned into U − T sub-masks denoted by [z

(ti)
i]1, · · · , [z(ti)i]U−T ,

where U denotes the targeted number of surviving users and N −D ≥ U ≥ T . User i also selects another T random masks
denoted by [n

(ti)
i]U−T+1, · · · , [n(ti)

i]U . These U partitions [z
(ti)
i]1, · · · , [z(ti)i]U−T , [n

(ti)
i]U−T+1, · · · , [n(ti)

i]U are then

LightSecAgg: A Lightweight and Versatile Design for Secure Aggregation in Federated Learning

encoded through an (N,U) Maximum Distance Separable (MDS) code as follows

[z̃
(ti)
i]j =

(
[z

(ti)
i]1, · · · , [z(ti)i]U−T , [n

(ti)
i]U−T+1, · · · , [n(ti)

i]U

)
Wj , (28)

where Wj is the Vandermonde matrix defined in (5). User i sends [z̃
(ti)
i]j to user j ∈ [N] \ {i}. At the end of this phase,

each user i ∈ [N] has [z̃
(tj)
j]i from j ∈ [N].

F.3.2 Training, Quantizing, Masking, and Uploading of Local Updates

Each user i trains the local model as in (24) and (25). User i quantizes its local update ∆
(t;ti)
i from the domain of real

numbers to the finite field Fq as masking and MDS encoding are carried out in the finite field to provide information-theoretic
privacy. The field size q is assumed to be large enough to avoid any wrap-around during secure aggregation.

The quantization is a challenging task as it should be performed in a way to ensure the convergence of the global model.
Moreover, the quantization should allow the representation of negative integers in the finite field, and enable computations
to be carried out in the quantized domain. Therefore, we cannot utilize well-known gradient quantization techniques such as
in (Alistarh et al., 2017), which represents the sign of a negative number separately from its magnitude. LightSecAgg
addresses this challenge with a simple stochastic quantization strategy combined with the two’s complement representation
as described subsequently. For any positive integer c ≥ 1, we first define a stochastic rounding function as

Qc(x) =


bcxc
c with prob. 1− (cx− bcxc)
bcxc+1

c with prob. cx− bcxc,
(29)

where bxc is the largest integer less than or equal to x, and this rounding function is unbiased, i.e., EQ[Qc(x)] = x. The
parameter c is a design parameter to determine the number of quantization levels. The variance of Qc(x) decreases as the
value of c increases. We then define the quantized update

∆
(t;ti)

i := φ
(
cl ·Qcl

(
∆

(t;ti)
i

))
, (30)

where the function Qc from (29) is carried out element-wise, and cl is a positive integer parameter to determine the
quantization level of the local updates. The mapping function φ : R→ Fq is defined to represent a negative integer in the
finite field by using the two’s complement representation,

φ(x) =

 x if x ≥ 0

q + x if x < 0.
(31)

To protect the privacy of the local updates, user i masks the quantized update ∆
(t;ti)

i in (30) as

∆̃
(t;ti)
i = ∆

(t;ti)

i + z
(ti)
i , (32)

and sends the pair of
{

∆̃
(t;ti)
i , ti

}
to the server. The local round index ti is used in two cases: (1) when the server identifies

the staleness of each local update and compensates it, and (2) when the users aggregate the encoded masks for one-shot
recovery, which will be explained in Section F.3.3.

F.3.3 One-shot Aggregate-update Recovery and Global Model Update

The server stores ∆̃
(t;ti)
i in the buffer, and when the buffer of size K is full, the server aggregates the K masked local

updates. In this phase, the server intends to recover∑
i∈S(t)

s(t− ti)∆(t;ti)
i , (33)

where ∆
(t;ti)
i is the local update in the real domain defined in (24), S(t) (

∣∣S(t)∣∣ = K) is the index set of users whose local
updates are stored in the buffer and aggregated by the server at round t, and s(τ) is the staleness function defined in (26). To

LightSecAgg: A Lightweight and Versatile Design for Secure Aggregation in Federated Learning

do so, the first step is to reconstruct
∑
i∈S(t) s(t− ti)z(ti)i . This is challenging as the decoding should be performed in the

finite field, but the value of s(τ) is a real number. To address this problem, we introduce a quantized staleness function
s : {0, 1, . . . , } → Fq ,

scg (τ) = cgQcg (s(τ)) , (34)

whereQc(·) is a stochastic rounding function defined in (29), and cg is a positive integer to determine the quantization level of
staleness function. Then, the server broadcasts information of

{
S(t), {ti}i∈S(t) , cg

}
to all surviving users. After identifying

the selected users in S(t), the local round indices {ti}i∈S(t) and the corresponding staleness, user j ∈ [N] aggregates its

encoded sub-masks
∑
i∈S(t) scg (t− ti)

[
z̃
(ti)
i

]
j

and sends it to the server for the purpose of one-shot recovery. The key

difference between the asynchronous LightSecAgg and the synchronous LightSecAgg is that in the asynchronous
LightSecAgg, the time stamp ti for encoded masks

[
z̃
(ti)
i

]
j

for each i ∈ S(t) can be different, hence user j ∈ [N] must

aggregate the encoded mask with the proper round index. Due to the commutative property of coding and linear operations,
each

∑
i∈S(t) scg (t − ti)

[
z̃
(ti)
i

]
j

is an encoded version of
∑
i∈S(t) scg (t − ti)

[
z
(ti)
i

]
k

for k ∈ [U − T] using the MDS

matrix (or Vandermonde matrix) V defined in (28). Thus, after receiving a set of any U results from surviving users in U2,
where |U2| = U , the server reconstructs

∑
i∈S(t) scg (t− ti)

[
z
(ti)
i

]
k

for k ∈ [U − T] via MDS decoding. By concatenating

the U − T aggregated sub-masks
∑
i∈S(t) scg (t− ti)

[
z
(ti)
i

]
k
, the server can recover

∑
i∈S(t) scg (t− ti)z(ti)i . Finally, the

server obtains the desired global update as follows

g(t) =
1

cgcl
∑
i∈S(t) scg (t− ti)

φ−1

 ∑
i∈S(t)

scg (t− ti)∆̃(t;ti)
i −

∑
i∈S(t)

scg (t− ti)z(ti)i

 , (35)

where cl is defined in (30) and φ−1 : Fq → R is the demapping function defined as follows

φ−1(x) =

 x if 0 ≤ x < q−1
2

x− q if q−1
2 ≤ x < q.

(36)

Finally, the server updates the global model as x(t+1) = x(t) − ηgg(t), which is equivalent to

x(t+1) = x(t) − ηg∑
i∈S(t) Qcg (s(t− ti))

∑
i∈S(t)

Qcg (s(t− ti))Qcl
(

∆
(t;ti)
i

)
, (37)

where Qcl and Qcg are the stochastic rounding function defined in (29) with respect to quantization parameters cl and cg,
respectively.

F.4 Convergence Analysis of Asynchronous LightSecAgg

We now provide the convergence guarantee of asynchronous LightSecAgg in the L-smooth and non-convex setting. The
prior works mostly focus on the synchronous FL setting, but here we focus on the buffered asynchronous setting. While
the convergence analysis in the buffered asynchronous setting has been considered recently in (Nguyen et al., 2021) and
the effects of the buffer size and the staleness have been analyzed, LightSecAgg requires quantization to enable secure
aggregation without TEEs. Hence, we extend this analysis here by taking the quantization’s effect into account.

For simplicity, we consider the constant staleness function s(τ) = 1 for all τ in (37). Then, the global update equation of
asynchronous LightSecAgg is given by

x(t+1) = x(t) − ηg
K

∑
i∈S(t)

Qcl

(
∆

(t;ti)
i

)
, (38)

where Qcl is the stochastic round function defined in (29), cl is the positive constant to determine the quantization level,
and ∆

(t;ti)
i is the local update of user i defined in (24). We first introduce our assumptions, which are commonly made in

analyzing FL algorithms (Li et al., 2019; Nguyen et al., 2021; Reddi et al., 2020; So et al., 2021a).

LightSecAgg: A Lightweight and Versatile Design for Secure Aggregation in Federated Learning

Assumption 1. (Unbiasedness of local SGD). For all i ∈ [N] and x ∈ Rd, Eξi [gi(x; ξi)] = ∇Fi(x) where gi(x; ξi) is the
stochastic gradient estimator of user i defined in (25).

Assumption 2. (Lipschitz gradient). F1, . . . , FN in (23) are all L-smooth: for all a,b ∈ Rd and i ∈ [N], ‖∇Fi(a) −
∇Fi(b)‖2 ≤ L‖a− b‖2.

Assumption 3. (Bounded variance of local and global gradients). The variance of the stochastic gradients at each user
is bounded, i.e., Eξi ‖∇gi(x; ξi)−∇Fi(x)‖2 ≤ σ2

l for i ∈ [N] and x ∈ Rd. For the global loss function F (x) defined in
(23), 1

N

∑N
i=1 ‖∇Fi(x)−∇F (x)‖2 ≤ σ2

g holds.

Assumption 4. (Bounded gradient). For all i ∈ [N], ‖∇Fi(x)‖2 ≤ G.

In addition, we make an assumption on the staleness of the local updates under asynchrony (Nguyen et al., 2021).

Assumption 5. (Bounded staleness). For each global round index t and all users i ∈ [N], the delay τ (t)i = t− ti is not
larger than a certain threshold τmax where ti is the latest round index when the global model is downloaded to user i.

Now, we state our main result for the convergence guarantee of asynchronous LightSecAgg.

Theorem 2. Selecting the constant learning rates ηl and ηg such that ηlηgKE ≤ 1
L , the global model iterations in (38)

achieve the following ergodic convergence rate

1

J

J−1∑
t=0

E
[
|∇F (x(t))|2

]
≤ 2F ∗

ηgηlEKT
+
Lηgηlσ

2
cl

2
+ 3L2E2η2l

(
η2gK

2τ2max

)
σ2, (39)

where F ∗ = F (x(0))− F (x∗), σ2 = G+ σ2
g + σ2

cl
, and σ2

cl
= d

4cl2
+ σ2

l .

The proof of Theorem 2 directly follows from the following useful lemma that shows the unbiasedness and bounded variance
still hold for the quantized gradient estimator Qc(g(x, ξ)) for any x ∈ Rd.

Lemma 2. For the quantized gradient estimator Qc(g(x, ξ)) with a given vector x ∈ Rd where ξ is a uniform random
variable representing the sample drawn, g is a gradient estimator such that Eξ[g(x, ξ)] = ∇F (x) and Eξ‖g(x, ξ) −
∇F (x)‖2 ≤ σ2

l , and the stochastic rounding function Qc is given in (29), the following holds,

EQ,ξ[Qc(g(x, ξ))] = ∇F (x) (40)

EQ,ξ‖Qc(g(x, ξ))−∇F (x)‖2 ≤ σ2
c , (41)

where σ2
c = d

4c2 + σ2
l .

Proof. (Unbiasedness). Given Qc in (29) and any random variable x, it follows that,

EQ [Qc(x) | x] =
bcxc
c

(1− (cx− bcxc)) +
(bcxc+ 1)

c
(cx− bcxc)

= x (42)

from which we obtain the unbiasedness condition in (40),

EQ,ξ[Qc(g(x, ξ))] = Eξ
[
EQ[Qc(g(x, ξ)) | g(x, ξ)]

]
= Eξ

[
g(x, ξ)

]
= ∇F (x). (43)

(Bounded variance). Next, we observe that,

EQ
[(
Qc(x)− EQ[Qc(x) | x]

)2 | x]
=

(
bcxc
c
− x
)2

(1− (cx− bcxc)) +

(
bcxc+ 1

c
− x
)2

(cx− bcxc)

LightSecAgg: A Lightweight and Versatile Design for Secure Aggregation in Federated Learning

=
1

c2

(
1

4
−
(
cx− bcxc − 1

2

)2
)

≤ 1

4c2
(44)

from which we obtain the bounded variance condition in (41) as follows,

EQ,ξ‖Qc(g(x, ξ))−∇F (x)‖2

= Eξ
[
EQ[‖Qc(g(x, ξ))−∇F (x)‖2 | g(x, ξ)]

]
≤ Eξ

[
EQ[‖Qc(g(x, ξ))− g(x, ξ)‖2 | g(x, ξ)]

]
+ Eξ

[
EQ[‖g(x, ξ)−∇F (x)‖2 | g(x, ξ)]

]
(45)

≤ d

4c2
+ σ2

l (46)

= σ2
c ,

where (45) follows from the triangle inequality and (46) follows form (44).

Now, the update equation of asynchronous LightSecAgg is equivalent to the update equation of FedBuff except
that LightSecAgg has an additional random source, stochastic quantization Qcl , which also satisfies the unbiasedness
and bounded variance. One can show the convergence rate of asynchronous LightSecAgg presented in Theorem 2
by exchanging Eξ and variance-bound σ2

l in (Nguyen et al., 2021) with EQcl
,ξ and variance-bound σ2

cl
= d

4cl2
+ σ2

l ,
respectively.

Remark 6. Theorem 2 shows that convergence rates of asynchronous LightSecAgg and FedBuff (see Corollary 1 in
(Nguyen et al., 2021)) are the same except for the increased variance of the local updates due to the quantization noise in
LightSecAgg. The amount of the increased variance d

4cl2
in σ2

cl
= d

4cl2
+ σ2

l is negligible for large cl, which will be
demonstrated in our experiments in Appendix F.5.

F.5 Experiments for Asynchronous LightSecAgg

As described in the previous sections, there is no prior secure aggregation protocol applicable to asynchronous FL, and
hence we cannot compare the the total running time of LightSecAgg with other baseline protocols, such as SecAgg
and SecAgg+ that were considered in synchronous FL. As such, in our experiments here we instead focus on convergence
performance of LightSecAgg compared to the buffered asynchronous FL scheme to highlight the impact of asynchrony
and quantization in performance. We measure the performance in terms of the model accuracy evaluated over the test
samples with respect to the global round index t.

Datasets and network architectures. We consider an image classification task on the MNIST (LeCun et al., 1998) and
CIFAR-10 datasets (Krizhevsky et al., 2009). For the MNIST dataset, we train LeNet (LeCun et al., 1998). For the
CIFAR-10 dataset, we train the convolutional neural network (CNN) used in (Xie et al., 2019). These network architectures
are sufficient for our needs as our goal is to evaluate various schemes, and not to achieve the best accuracy.

Setup. We consider a buffered asynchronous FL setting with N = 100 users and a single server having the buffer of
size K = 10. For the IID data distribution, the training samples are shuffled and partitioned into N = 100 users. For
asynchronous training, we assume the staleness of each user is uniformly distributed over [0, 10], i.e., τmax = 10, as used in
(Xie et al., 2019). We set the field size q = 232 − 5, which is the largest prime within 32 bits.

Implementations. We implement two schemes, FedBuff and LightSecAgg. The key difference between the two
schemes is that in LightSecAgg, the local updates are quantized and converted into the finite field to provide privacy of
the individual local updates while all operations are carried out over the domain of real numbers in FedBuff. For both
schemes, to compensate the staleness of the local updates, we employ the two strategies for the weighting function: a
constant function s(τ) = 1 and a polynomial function sα(τ) = (1 + τ)−α.

Empirical results. In Figure 11(a) and 11(b), we demonstrate that LightSecAgg has almost the same performance as
FedBuff on both MNIST and CIFAR-10 datasets, while LightSecAgg includes quantization noise to protect the privacy
of individual local updates of users. This is because the quantization noise in LightSecAgg is negligible. To compensate
the staleness of the local updates over the finite field in LightSecAgg, we implement the quantized staleness function

LightSecAgg: A Lightweight and Versatile Design for Secure Aggregation in Federated Learning

(a) MNIST dataset. (b) CIFAR-10 dataset.

Figure 11. Accuracy of asynchronous LightSecAgg and FedBuff with two strategies for the weighting function to mitigate the
staleness: a constant function s(τ) = 1 (no compensation) named Constant; and a polynomial function sα(τ) = (1 + τ)−α named Poly
where α = 1.

(a) MNIST dataset. (b) CIFAR-10 dataset.

Figure 12. Accuracy of asynchronous LightSecAgg and FedBuff with various values of the quantization parameter cl = 2cbit .

defined in (34) with cg = 26, which has the same performance in mitigating the staleness as the original staleness function
carried out over the domain of real numbers.

Performance with various quantization levels. To investigate the impact of the quantization, we measure the performance
with various values of the quantization parameter cl on MNIST and CIFAR-10 datasets in Fig. 12. We observe that cl = 216

has the best performance, while a small or a large value of cl has poor performance. This is because the value of cl provides
a trade-off between two sources of quantization noise: 1) the rounding error from the stochastic rounding function defined in
(29) and 2) the wrap-around error when modulo operations are carried out in the finite field. When cl has small value the
rounding error is dominant, while the wrap-around error is dominant when cl has large value. To find a proper value of cl,
we can utilize the auto-tuning algorithm proposed in (Bonawitz et al., 2019c).

