IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, JANUARY 2021 1

CodedPrivateML: A Fast and Privacy-Preserving
Framework for Distributed Machine Learning

Jinhyun So*, Basak Giiler*, Member, IEEE

Abstract—How to train a machine learning model while
keeping the data private and secure? We present CodedPri-
vateML, a fast and scalable approach to this critical problem.
CodedPrivateML keeps both the data and the model information-
theoretically private, while allowing efficient parallelization of
training across distributed workers. We characterize CodedPri-
vateML’s privacy threshold and prove its convergence for logistic
(and linear) regression. Furthermore, via extensive experiments
on Amazon EC2, we demonstrate that CodedPrivateML provides
significant speedup over cryptographic approaches based on
multi-party computing (MPC).

Index Terms—Distributed training, privacy-preserving ma-
chine learning.

I. INTRODUCTION

Modern machine learning models are breaking new ground
by achieving unprecedented performance in various application
domains [1]. Training such models, however, is a challenging
task. Due to the typically large volume of data and complexity
of models, training is a compute and storage intensive task.
Furthermore, training should often be done on sensitive data,
such as healthcare records, browsing history, or financial
transactions, which raises the issues of security and privacy
of the dataset. This creates a challenging dilemma. On the
one hand, due to its complexity, training is often desired to be
outsourced to more capable computing platforms, such as the
cloud. On the other hand, the training dataset is often sensitive
and particular care should be taken to protect its privacy against
potential breaches in such platforms. This dilemma gives rise
to the main problem that we study here: How can we offload
the training task to a distributed computing platform, while
maintaining the privacy of the dataset?

Cloud environments often operate on a shared physical
infrastructure, where multiple users share the same host
machine, and are separated from each other by virtual machines

* Equal contribution.

This material is based upon work supported by Defense Advanced Research
Projects Agency (DARPA) under Contract No. HR001117C0053, ARO award
WO11NF1810400, NSF grants CCF-1703575 and CCF-1763673, and ONR
Award No. N00014-16-1-2189, and a gift from Intel. The views, opinions,
and/or findings expressed are those of the author(s) and should not be
interpreted as representing the official views or policies of the Department of
Defense or the U.S. Government.

Jinhyun So is with the Department of Electrical and Computer Engineering,
University of Southern California, Los Angeles, CA, 90089 USA (e-mail:
jinhyuns@usc.edu). Basak Giiler is with the Department of Electrical and
Computer Engineering, University of California, Riverside, CA, 92521 USA
(email: bguler@ece.ucr.edu). A. Salman Avestimehr is with the Department
of Electrical and Computer Engineering, University of Southern California,
Los Angeles, CA, 90089 USA (e-mail: avestimehr @ee.usc.edu).

This article has supplementary downloadable material available at
https://doi.org/xx.xxxx/JSAIT.2021.yyyyyy, provided by the authors.

and A. Salman Avestimehr, Fellow, IEEE

that act as barriers to prevent information leakage. This shared
environment provides significant benefits for scaling up cloud
systems, but also introduces important security and privacy
challenges that may result from potentially adversarial users.
For instance, it has been shown that adversarial users can
compromise the host machines by disguising themselves as
regular users, and access the information of other users sharing
the same host machines [2]-[7]. The focus of this paper is on
privacy protection against such adversaries that can access a
portion of the physical host machines in the cloud, and use them
to spy on other users’ datasets. We focus on the semi-honest
adversary setup, where the adversaries follow the protocol but
may leak information in an attempt to learn the training dataset.
Our goal is to develop a privacy-preserving training strategy for
the honest users that will protect the privacy of their datasets
even if a portion of the compute machines in the cloud are
controlled by adversaries.

More specifically, we consider a scenario in which a data-
owner (e.g., a hospital) wishes to train a logistic regression
model by offloading the large volume of data (e.g., healthcare
records) and computationally-intensive training tasks (e.g.,
gradient computations) to N machines over a cloud platform,
while ensuring that any collusions between 7 out of N
workers do not leak information about the training dataset. We
propose a new framework, CodedPrivateML (Coded Privacy-
preserving Machine Learning), towards addressing this problem.
CodedPrivateML has three salient features:

1) provides strong information-theoretic privacy guarantees
for both the training dataset and model parameters in the
presence of colluding workers,

2) enables fast training by distributing the computation load
effectively across several workers,

3) leverages a new method for encoding the dataset and
model parameters based on coding and information theory
principles, which significantly reduces the communication
overhead and the complexity for distributed training.

At a high level, CodedPrivateML can be described as follows.
It secret shares the dataset and model parameters at each
round of the training in two steps. First, it employs stochastic
quantization to convert the dataset and the weight vector at
each round into a finite domain. It then combines (or encodes)
the quantized values with random matrices using Lagrange
coding [8], to guarantee privacy (in an information-theoretic
sense) while simultaneously distributing the workload among
multiple workers. The challenge is however that Lagrange
coding can only work for computations that are in the form
of polynomial evaluations. The gradient computation for

2 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, JANUARY 2021

logistic regression, on the other hand, includes non-linearities
that cannot be expressed as polynomials. CodedPrivateML
handles this challenge through polynomial approximations of
the non-linear sigmoid function in the training phase. Upon
secret sharing of the encoded dataset and model parameters,
each worker performs the gradient computations using the
chosen polynomial approximation, and sends the result back
to the master. The workers perform the computations over the
quantized and encoded data as if they were computing over
the uncoded dataset. That is, the structure of the computations
are the same for computing over the uncoded dataset versus
computing over the encoded dataset. Finally, the master collects
the results from a subset of fastest workers and decodes the
gradient over the finite field. It then converts the decoded
gradients to the real domain, updates the weight vector, and
secret shares it with the worker nodes for the next round. We
note that since the computations are performed in a finite
domain while the weights are updated in the real domain, the
update process may lead to undesired behaviour as weights
may not converge. Our system guarantees convergence through
a stochastic quantization technique while converting between
real and finite fields.

We theoretically prove that CodedPrivateML guarantees
the convergence of the model parameters, while providing
information-theoretic privacy for the training dataset. Our
theoretical analysis also identifies a trade-off between privacy
and parallelization. More specifically, each additional worker
can be utilized either for more privacy, by protecting against
a larger number of collusions 7', or more parallelization, by
reducing the computation load at each worker. We characterize
this trade-off for CodedPrivateML. Furthermore, we empirically
demonstrate the impact of CodedPrivateML by comparing it
with the cryptographic approach based on secure multi-party
computing (MPC) [9]-[12], that can also be applied to enable
privacy-preserving machine learning tasks (e.g., see [13]-[18]).
In particular, we envision a master who secret shares its data
and model among multiple workers who collectively perform
the gradient computation using a multi-round MPC protocol.
Given our focus on information-theoretic privacy, the most
relevant MPC-based schemes for empirical comparison are the
protocols from [10] and [11], [12] based on Shamir’s secret
sharing [19]. While several more recent works design MPC-
based learning setups with information-theoretic privacy, their
constructions are limited to three or four parties [20], [21].

We run extensive experiments over the Amazon EC2
cloud platform to empirically demonstrate the performance
of CodedPrivateML. We train a logistic regression model for
image classification over the CIFAR-10 [22] and GISETTE
[23] datasets, while the computation workload is distributed
to up to N = 50 machines over the cloud. We demonstrate
that CodedPrivateML can provide significant speedup in the
training time against the state-of-the-art MPC baseline (up to
5.2x), while guaranteeing comparable levels of accuracy. This
is primarily due to conventional MPC protocols’ reliance on
extensive communication and coordination between the workers
for private computing, and not benefiting from parallelization.
They can however guarantee a higher privacy threshold (i.e.,
larger T') compared with CodedPrivateML.

A. Other related works

Apart from the MPC-based schemes, one can consider two
other solutions to this problem. One is based on Homomorphic
Encryption (HE) [24] which allows for computations to be
performed on encrypted data, and has been used for privacy-
preserving machine learning solutions [25]-[33]. The privacy
guarantees of HE are based on computational assumptions,
whereas CodedPrivateML provides strong information-theoretic
privacy. Moreover, HE requires computations to be performed
on encrypted data which leads to many orders of magnitude
slow down in training. For example, for image classification
on the simple MNIST dataset, HE takes 2 hours to learn a
logistic regression model with 96% accuracy [33], whereas
for the same training setup, CodedPrivateML takes only 37
seconds. This is due to the fact that, in CodedPrivateML there
is no slow down in performing coded computations which
allows for a faster implementation. As a trade-off, HE allows
collusions between a larger number of workers whereas in
CodedPrivateML this number is determined by other system
parameters such as the number of workers and the computation
load assigned per worker.

Another possible solution is based on differential privacy
(DP), which is a noisy release mechanism that preserves
the privacy of personally identifiable information, in that the
removal of any single element from the dataset does not change
the computation outcomes significantly [34]. In the context
of machine learning, DP is mainly used for training when
the model parameters are to be released for public use, to
ensure that the individual data points from the dataset cannot
be identified from the released model [35]-[41]. The main
difference between these approaches and our work is that
our focus is on ensuring strong information-theoretic privacy
(that leaks no information about the dataset) during training,
while preserving the accuracy of the model. We note, however,
that if the intention is to publicly release the model after
training, it is in principle possible to compose the techniques
of CodedPrivateML with differential privacy to obtain the best
of both worlds.

II. SYSTEM MODEL

We study the problem of training a logistic regression model.
The training dataset is represented by a matrix X € R”*¢
consisting of m data points with d features and a label vector
y € {0,1}™. The model parameters (weights) w € R are
obtained by minimizing the cross entropy function,

1 m
Cw) = — > (~yilog i = (1= y)log(1 = $0). (1)
i=1

where §; = s(x;-w) € (0, 1) is the estimated probability of label
i being equal to 1, x; is the i’ row of X, and s(-) is the sigmoid
function s(z) = 1/(1 + e7%). The problem in (1) can be solved
via gradient descent, through an iterative process that updates
the model parameters in the opposite direction of the gradient.
The gradient for (1) is given by VC(w) = %XT(S(X XW)—Yy).
Accordingly, model parameters are updated as,

wtD = w® _ T X x w) — y), @)
m

SO et al.: CODEDPRIVATEML: A FAST AND PRIVACY-PRESERVING FRAMEWORK FOR DISTRIBUTED MACHINE LEARNING 3

=
master T“‘@
A

Dataset: X

S BB

worker 1

T colluding workers

Fig. 1. The distributed training setup consisting of a master and N worker
nodes.

where w® holds the estimated parameters from iteration ¢, n
is the learning rate, and function s(-) operates element-wise
over the vector given by X x w(®).

We consider the master-worker distributed computing ar-
chitecture shown in Figure 1, in which the master offloads
the computationally-intensive operations to N workers. For
the training problem, these operations correspond to gradient
computations in (2). In doing so, the master wishes to protect
the privacy of the dataset X against any potential collusions
between up to T workers, where T is the privacy parameter
of the system.

In this work, we consider strong information-theoretic
privacy, where any subset of 7' colluding workers can not
learn any information about the original dataset X. Formally,
for every subset of workers 7~ C [N] of size at most T, we
require /(X;Zs) = 0 for any distribution on X, where / is the
mutual information, and Zq- represents the collection of all the
information received by the workers in set 7 during training.
The distribution of X may be known to the workers. We refer to
a protocol that guarantees privacy against 7' colluding workers
as a T-private protocol. In the sequel, we present a novel
protocol, CodedPrivateML, to solve (1) while preserving the
information-theoretic privacy of the dataset against up to T
colluding workers.

Remark 1. Although our presentation is based on logistic
regression, CodedPrivateML can also be applied to the simpler
linear regression model with minor modifications.

III. THE CODEDPRIVATEML PROTOCOL

CodedPrivateML consists of four main components: 1)
quantization, 2) encoding, 3) polynomial approximation and
gradient computation, and 4) decoding the gradient and model
update. Figure 2 shows the flowchart of CodedPrivateML. In
the first component, the master quantizes the dataset from the
real domain to the domain of integers, and then embeds it in
a finite field. In the second component, the master encodes
the quantized dataset and sends them to the workers. At each
iteration, the master also quantizes and encodes the model
parameters. In the third component, given the encoded dataset
and model parameters, each worker performs the gradient
computations by using polynomial approximation to substitute
the sigmoid function. In the last component, the master decodes
the gradient computations and converts them from the finite
field to real domain, and updates the model parameters in the

| Quantization (dataset) |

| Encoding (dataset) |

| Encoding (model parameters) |

Until
convergence

Polynomial Approximation and
Gradient Computation

| Decoding the gradient and model update

Fig. 2. Flowchart of CodedPrivateML.

real domain. This process is iterated until the model parameters
converge.
We now provide the details of each component.

A. Quantization

In order to guarantee information-theoretic privacy, one has
to mask the dataset and weights in a finite field' F using
uniformly random matrices, so that the added randomness can
make each data point appear equally likely. In contrast, the
dataset and weights for the training task are defined in the
domain of real numbers. Our solution to handle the conversion
between the real and finite domains is through the use of
stochastic quantization. Accordingly, in the first component of
our system, master quantizes the dataset and weights from the
real domain to the domain of integers, and then embeds them
in a field F, of integers modulo a prime p. The quantized
version of the dataset X is given by X. The quantization
of the weight vector w®, on the other hand, is represented
by a matrix W(I), where each column holds an independent
stochastic quantization of w*). This structure will be important
for the convergence of the model.

We consider an element-wise lossy quantization scheme for
the dataset and weights. For quantizing the dataset X € R,
we use a simple deterministic rounding technique:

Lx] if x—-[x]<0.5
[x] +1 otherwise

Round(x) = : , 3)
where | x| is the largest integer less than or equal to x. We
define the quantized dataset as

4)

where the rounding function from (3) is applied element-wise
to the elements of matrix X and [, is an integer parameter
that controls the quantization loss. Function ¢ : R — F, is a
mapping defined to represent a negative integer in the finite
field by using two’s complement representation,

X244 (Round(le . X)) ,

X if x>0

p+x ifx<0)

o0 - |
Note that the domain of (4) is [- 2<I:z,x__+lm Z(I;X—_fl)] To avoid a
wrap-around which may lead to an overflow error, prime p
should be large enough, i.e., p > 2&+*! max{|X; |} + 1. The
value of p also depends on the bitwidth of the machine as well

'We need a finite field instead of a ring as our encoding and decoding
schemes based on Lagrange coding, which we explain in Sections III-B and
II1I-D, require division (or inverse multiplication) which the ring does not have
in general.

4 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, JANUARY 2021

as the number of features d. For instance, in our experiments
presented in Section V, we select p = 2% — 37 in a 64-bit
implementation with the GISETTE dataset whose number of
features is d = 5000. This is the largest prime to avoid an
overflow on intermediate multiplications. More specifically,
we do a modular operation after the inner product of vectors
instead of doing a modular operation per product of each
element in order to speed up the running time of matrix-matrix
multiplication. To avoid an overflow on this, p should satisfy
dip—1)> <2% 1.

At each iteration ¢, master also quantizes the weight vector
w") from real domain to the finite field. This proves to be
a challenging task as it should be performed in a way to
ensure the convergence of the model. Our solution to this is
a quantization technique inspired by [42], [43]. Initially, we
define a stochastic quantization function:

O(x; L) 2 - X)), (6)

where /,, is an integer parameter to control the quantization
loss. Roundgo. : R — R is a stochastic rounding function:

Lx]
[x]+1

¢ (Roundsroc (2"

with prob. 1 — (x — | x])

Roundsoc(x) = { with prob. x — | x]

The probability of rounding x to | x] is proportional to the
proximity of x to |x] so that stochastic rounding is unbiased
(i.e., E[Roundg;oc(x)] = x).

For quantizing the weight vector w(), the master creates r
independent quantized vectors:

w2 0,wh;1,) e FXY for jelr] 0

where the quantization function (6) is applied element-wise
to the vector w”) and each Q ;(+;-) denotes an independent
realization of (6). To avoid a wrap-around which may lead
to an overflow error, prime p should be large enough, i.e.,
p > 2b+l max{|w£.t)|} + 1. The number of quantized vectors r
is equal to the degree of the polynomial approximation for the
sigmoid function, which we will describe later in Section III-C.
The intuition behind creating » independent quantizations is
to ensure that the gradient computations performed using the
quantized weights are unbiased estimators of the true gradients.
As detailed in Section IV, this property is fundamental for
the convergence analysis of our model. The specific values of
parameters [, and [,, provide a trade-off between the rounding
error and overflow error. In particular, a larger value reduces
the rounding error while increasing the chance of an overflow.
We denote the quantization of the weight vector w®) as

(1) _ W(Z)’l (8)

by arranging the quantized vectors from (7) in matrix form.

- w0

B. Encoding the Dataset and the Model

In the second component, the master partitions the quantized
dataset X €]F;”Xd into K submatrices and encodes them using
Lagrange codlng [8] It then sends to worker i € [N] a coded
submatrix X; € F" . This encoding enables two salient
features of CodedanateML, parallelization and information-
theoretic privacy guarantees. First, parameter K is related to

the computation load at each worker (i.e., what fraction of the
dataset is processed at each worker) because the size of encoded
dataset is 1/K-th of the size of original dataset X. As we will
show later, we can increase the parameter K as N increases,
which reduces the computation overhead of each worker and
communication overhead between the master and workers. This
property enables our approach to scale to a significantly larger
number of workers than state-of-the-art privacy preserving
machine learning approaches. Second, this encoding ensures
that the coded matrices do not leak any information about the
original dataset X even if T workers collude, which will be
showed in Section IV. In addition, the master has to ensure the
weight estimations sent to the workers at each iteration do not
leak information about the dataset. This is because the weights
updated via (2) carry information about the whole training set,
and sending them directly to the workers may breach privacy.
In order to prevent this, at iteration ¢, the master also quantizes
the current weight vector w'”) to the finite field and encodes it
again using Lagrange coding.

We now state the details of our second component. The
master first partitions the quantized datarget X into K subma-
trices X = [XlT .. .i;]T, where X; €]Fp?x‘l for i € [K]. We
assume that m is divisible by K. Next, the master selects
K + T distinct elements B, ..., Bg+r from F, and employs
Lagrange coding [8] to encode the dataset To do so, the
master forms a polynomial u : F, — FK
K + T —1 such that u(8;) = X; for i €
forie {K+1,. K + T}, where R;’s are chosen umformly
at random from FK (the role of R;’s is to mask the dataset
and provide privacy against up to T colluding workers). This
can be accomplished by letting u be the respective Lagrange
interpolation polynomial,

of degree at most

], and u(B;) =

X] e N [] S
u(z) X, - .
ke[K+T] \{J}’B’ —Pr j=K+1 [K+T]\{j}ﬁj_18k

The master then selects N distinct elements {a; };e[n] from F,
such that {ozl}lE 1N {B;}jex] = @, and encodes the dataset
by letting X; = u(al) for i € [N]. By defining an encoding
matrix U =[u;...uy] €]F(K+T)XN whose (i, j)"* element is
given by u;; = er [K+T]\{i} ﬁi_gf’ one can also represent the
encoding of the dataset as

X; = u(e;) = Xy, ..., X, Rico1 - -, Ricar) - 0y (10

. . . . <
At iteration ¢, the quantized weights WU are also encoded

using a Lagrange interpolation polynomial,

0 B K+T
v(z) & Z w Pk

+ Z V;-
jelK] ke[K+T]\{j}ﬁj_Bk =K+l ke[K+TI\{j}

=Pk
Bj ﬁk

(11)
where V; for j € [K+1, K+T] are chosen uniformly at random
from IF;,’X’. The coefficients 4, ..., Bx+r are the same as in
(9), and we have the property v(B8;) = W(t) for i € [K]. The
master then encodes the quantized weight vector by using
the same evaluation points {a; };e[n]. Accordingly, the weight
vector is encoded as

WO = v(ar)=(W". ..

o)
W VK+17""VK+T).ui7 (12’)

SO et al.: CODEDPRIVATEML: A FAST AND PRIVACY-PRESERVING FRAMEWORK FOR DISTRIBUTED MACHINE LEARNING 5

for i € [N], using the encoding matrix U from (10). The degree
of the polynomials u(z) and v(z) are both K + T — 1.

C. Polynomial Approximation and Gradient Computation

Upon receiving the encoded (and quantized) dataset and
weights, workers should proceed with gradient computations.
However, a major challenge is that Lagrange coding is
originally designed for polynomial computations, while the
gradient computations are not polynomials due to the sigmoid
function. Our solution is to use a polynomial approximation
of the sigmoid function,

-
8(z) = Z i,
i=0
where r and ¢; denotes the degree and coefficients of the
polynomial, respectively. The coefficients are obtained by fitting
the sigmoid function via least squares estimation. Using this
polynomial approximation we can rewrite (2) as

W(t+1) — W(l) _EXT(_’S:(X X W(t)) - y)
m

(13)

(14)

where X is the quantized version of X, and §(-) operates
element-wise over the vector X x w().

Another challenge is to ensure the convergence of weights.
As we detail in Section IV, this necessitates the gradient
estimations to be unbiased using the polynomial approximation
with quantized weights. We solve this by utilizing the compu-
tation technique from Section 4.1 in [43] using the quantized
weights formed in Section III-A. Specifically, given a degree
r polynomial from (13) and r independent quantizations from
(8), we define a function

SXW) 2 Y o[[Xxw)

i=0

15)
jsi

where the product [];; operates element-wise over the vectors
(X x Wi) for j <. Lastly, we note that (15) is an unbiased
estimator of §(X x w(")),

EFEX W) = X x w), (16)

where §(-) acts element-wise over the vector X x w(®), and the
result follows from the independence of quantizations. Using
(15), we rewrite the update equations from (14) using quantized
weights,

wtD) = w0 _IXT(5X W(’)) -y). 17
m

CodedPrivateML guarantees the convergence to the optimal loss
function C(w*) where C is the cross entropy function defined
in (1), even though we use the polynomial approximation to
substitute the sigmoid function in the update equation (2),
which will be demonstrated in Section IV.
Computations are then performed at each worker locally.
At each iteration, worker i € [N] locally computes f :
nxd d d
By XF — Fp,

FE W) =X 53X W), (18)
using X; and Wf.t) and sends the result back to the master. This
computation is a polynomial function evaluation in finite field
arithmetic and the degree of f is deg(f) = 2r + 1.

D. Decoding the Gradient and Model Update
After receiving the evaluation results in (18) from a sufficient
number of workers, master decodes { f (ik,W”) }k

the finite field. The minimum number of workers needgt[inlor the
decoding operation to be successful, which we call the recovery
threshold of the protocol, is equal to 2r + 1)(K+T - 1) + 1
as we demonstrate in Section IV.

We now proceed to the details of decoding. By construction
of the Lagrange polynomials in (9) and (11), one can define a
univariate polynomial (z) = f(u(z), v(z)) such that

B = £ (B v(B) = (X W) =X, 53X, W), (19)

for i € [K]. On the other hand, from (18), the computation
result from worker i equals to

over

hei) = f (utan), v(en)) = £(X: W) =X 5%, W), 20)
The main intuition behind the decoding process is to use the
computations from (20) as evaluation points /(q;) to interpolate
the polynomial A(z). Specifically, the master can obtain all
coefficients of A(z) from (2r + 1)(K + T — 1) + 1 evaluation
results as the degree of the polynomial A(z) is less than or
equal to (2r + 1)(K +T —1). After h(z) is recovered, the master
can recover (19) by computing h(B;) for i € [K]. To do so,
the master performs polynomial interpolation in a finite field.
Upon receiving the local computation f ()~(l WEZ)) in (20) from
at least (2r + 1)(K + T — 1) + 1 workers, the master computes

< i <. W Bk —aj
FRW) 2 X W[=—2 @b

iel jer\{i} @i =
for k € [K], where I C [N] denotes the set of the first
(2r+1)(K+T—-1)+1 workers who send their local computations

f()~(i, Wf.t)) to the master. The master then aggregates the

decoded computations f (ik,W(‘)

gradient as,

) to compute the desired

K K
> & W) = Y X5, W) =X sxX W) 22
k=1 k=1

Lastly, master converts (22) from the finite field to the real
domain and updates the weights according to (17) in the real
domain. This conversion is attained by the function

0, @ =2"¢""(x),

where we let [= Iy +r(ly +1,), and ¢~ : F, — R is defined
as,

(23)

(24)

=| =l

¢ @ = {

The overall procedure of CodedPrivateML is given in Algo-
rithm 1.

IV. THEORETICAL RESULTS

Consider the cost function (1) when the dataset X is replaced
with the quantized dataset X. Also, denote w* as the optimal
weight vector that minimizes (1) when ¥; = s(X; - W), where X;
is row i of X. In this section, we prove that CodedPrivateML
guarantees convergence to the optimal model parameters (i.e.,

6 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, JANUARY 2021

Algorithm 1 CodedPrivateML

input Dataset X,y

output Model parameters w(/) where J is the number of iterations
Master: _

1: Compute the quantized dataset X using (4).

2: Form the encoded matrices {X;};¢[n] in (10).

3: Send X; to worker i € [N].

4: Initialize the weights w(©) e R4x1.

5: for iteration t = 0,...,

6

7

8

J—1do
Find the quantized weights W(t) from (8).
Encode W(t) into {Wff }ie[nvy using (12).
Send W() to worker i € [N].
Workers:
9: for workeri=1,...,N do
10: Compute f (X,—,Wgt)) from (18) and send the result back to
the master.
11: end for
Master:
12: if Results received from at least (2r + 1)(K +7T — 1) + 1 workers
then - —0
13: Decode {f(Xk, W™)}rek) via polynomial interpolation
from the received results.
14: end if

15: Compute YK k=1 f(ik,W(t)) in (22) and convert it from finite
field to real domain using (23).

16: Update the weights via (17) to obtain w(/*1).

17: end for

18: return w(/)

w*) while maintaining the privacy of the dataset against
colluding workers. Recall that the model update at the master
follows from (17), which is

< -% wi)
~IX G W) -).

W([+l) — w(t) (25)
We first state a lemma, which shows that the gradient esti-
mation of CodedPrivateML is unbiased and variance bounded.

Lemma 1. Ler p*) £ ((X

gradient computation using the quantized weights W(l
CodedPrivateML. Then, we have
o (Unbiasedness) Vector p*) is an asymptotically unbiased
estimator of the true gradient. E[p"] = VC(w") + €(r),
and €(r) — 0 as r — oo where r is the degree of the
polynomial in (13) and the expectation is taken with respect
to the quantization errors,
o (Variance bound) E[||p"” — E[p(’)]H%] <
a2 where || - || and || -
respectively.

) —y) denote the

-l g
||F are the I, and Frobenius norms,

Proof. The proof of Lemma 1 is presented in Appendix A. [J

We also need the following basic lemma, which describes
the L-Lipschitz property of the gradient of the cost function.

Lemma 2. The gradient of the cost function from (1) evaluated
on the quantized dataset X is L-Lipschitz with L £ ||X||2,
that is, ||[VC(w) = VC(W')|| < L||lw = W’|| for all w,w’ € R%.

Proof. The proof of Lemma 2 is presented in Appendix B. [

We now state our main result for the theoretical performance
guarantees of CodedPrivateML.

TABLE 1
COMPLEXITY SUMMARY OF CODEDPRIVATEML.
Computation Communication
Master O("NED) | gryN(K +T)) O(24N. 4 4rNJ)
2
Worker 0(%) 0(7 +drlJ)

Theorem 1. Consider the training of a logistic regression
model in a distributed system with N workers using Coded-
PrivateML with the dataset X = (X, ..., Xg), initial weight
vector w9, and constant step size n = 1/L (where L is defined
in Lemma 2). Then, CodedPrivateML guarantees,

O _ w12
J OW(I))] C(W*) < IIw - JW I +
% is given in Lemma 1,

information-theoretically

. (Convergence) E[C(}
no? in J iterations, where o
e (Privacy) X remains
private against any T colluding workers, i.e.,
1(X; X, {W({;.)}tem) = 0 for any distribution on
X and any set T C [N] with |T| < T,
forany N > 2r + 1)(K + T — 1) + 1, where r is the degree of
the polynomial from (13).

Remark 2. Theorem 1 reveals an important trade-off between
privacy and parallelization in CodedPrivateML. Parameter K
reflects the amount of parallelization in CodedPrivateML, since
the computation load at each worker node is proportional
to 1/K-th of the dataset. Parameter T reflects the privacy
threshold in CodedPrivateML. Theorem 1 shows that, in a
cluster with N workers, we can achieve any K and T as long
as N > 2r + 1)(K +T — 1) + 1. This condition further implies
that, as the number of workers N increases, the parallelization
(K) and privacy threshold (T) of CodedPrivateML can also
increase linearly, leading to a scalable solution.

Remark 3. There are two terms in the bound on the distance
between the loss function to the optimum in the first equatton of
Theorem 1, i.e., E[C(5 X]_o W\)| -C(w") < ”w(h;w”ﬁ](f
When we use a constant learning rate n = 1/L, the first
_ LIwO-w P

term = 37 goes to zero as the number
of iterations J increases, hence CodedPrivateML has the
convergence rate of O(1/J). The second term no?* = UT? is
a residual error in the training as it does not go to zero as
J increases. By using an adaptive (decreasing) learning rate,
this term can be made arbitrarily small.

2
LW —w |

Remark 4. The convergence rate of CodedPrivateML is the
same as that of conventional logistic regression. This follows
from Theorem 1 where the convergence rate of CodedPrivateML
is found as 0(}) where J is the iteration index, which is the
same as the convergence rate of conventional logistic regression,
which follows from [44, Section 9.3] and [44, Section 7.1.1].

Remark 5. Theorem 1 applies also to (simpler) linear regres-
sion. The proof follows the same steps.

Proof. The proof of Theorem 1 is presented in Appendix C.
O

A. Complexity Analysis

In this section, we analyze the asymptotic complexity of
CodedPrivateML with respect to the number of workers N,

SO et al.: CODEDPRIVATEML: A FAST AND PRIVACY-PRESERVING FRAMEWORK FOR DISTRIBUTED MACHINE LEARNING 7

parallelization parameter K, privacy parameter 7, number of
samples m, number of features d, and number of iterations J.
Complexity Analysis of the Master Node: Computation cost
of the master node can be broken into three parts: 1) encoding
the dataset by using X; = u(e;) from (9) for i € [N], 2)
encoding the weight vector by using WE’) = v(a;) from (11)
for i € [N],t € [J], and 3) decoding the gradient by recovering
h(B;) in (19) for i € [K]. For the first part, the encoded dataset
X; (i € [N]) from (9) is a weighted sum of K + T matrices
where the size of each matrix is £ x d. The Lagrangian
coefficients can be calculated offline since the sets of {a;};e[n
and {B;};je[k] are public. Each encoding requires O(M)
multiplications and we must perform N encodings, resulting
in a total computational cost of O(Z4NET)) Decoding the
gradient computations from (21) can be performed via a
weighted sum of (2r + 1)(K+T — 1)+ 1 = O(N) vectors where
the size of each vector is d. Each decoding requires O(dN)
multiplications and we require K decoded gradients, resulting
in a total computational cost of O(dJNK). Communication
cost of the master node t0 send the encoded dataset X and the
encoded weight vector W to worker i € [N] is 0(%) and
O(drNJ), respectively. Communication cost of the master to
receive the local computation f (ii, WE’)) from worker i € [N]
for t € [J] is O(dJN).
Complexity Analysis of the Workers: Computation cost of
worker i to compute X[X;, the dominant part of the local
computation f()~(l-, Wgt)) in (18), is O(dez). This corresponds
to 0(%)“’ of the computation cost of conventional logistic
regression, which requires the computation of X7 s(X x w(®)) in
(2). This is due to the fact that the size of the encoded dataset
X; and original dataset X are % x d and m X d, respectively.
Communication cost of worker i to recetlve the encoded dataset
X; and the encoded weight vector W, ~ for ¢t € [J] is O(md)
and O(drJ), respectively. Communlcatlon cost of worker i to
send the local computation f X, WEI)) to the master for ¢ € [J]
is 0(dJ).

We summarize the asymptotic complexity of CodedPri-
vateML in Table 1.

V. EXPERIMENTS

We now experimentally demonstrate the performance of
CodedPrivateML compared to conventional MPC baselines.
Our focus is on training a logistic regression model for image
classification, while the computation load is distributed to
multiple machines on the Amazon EC2 Cloud Platform.
Experiment setup. We train the logistic regression model
from (1) for binary image classification on the CIFAR-10 [22]
and GISETTE [23] datasets to experimentally examine two
things: the accuracy of CodedPrivateML and the performance
gain in terms of training time. The size of the CIFAR-
10 and GISETTE datasets are (m,d) = (9019,3073)> and
(6000, 5000), respectively. We implement the communication
phase using the MPI4Py [45] message passing interface
on Python. Computations are performed in a distributed

2We select images with the label of "plane” and "car", and the number of
these images in 50000 training samples is 9019. For the number of features,
we added a bias term, hence, we have 3072 + 1 = 3073 features.

manner on Amazon EC2 clusters using m3 . x1arge machine
instances.

We then compare CodedPrivateML with two MPC-based
benchmarks that we apply to our problem. In particular, we
implement two MPC constructions. The first one is based on
the well-known BGW protocol [10], whereas the second one
is a more recent protocol from [11], [12] that trade-offs offline
calculations for a more efficient implementation. Our choice of
these MPC benchmarks is due to their ability to be applied to
a large number of workers. While several more recent works
exist that have developed MPC-based training protocols with
information-theoretic privacy guarantees, their constructions
are limited to three or four parties [15], [20], [21]. For instance,
[15] is a two-party protocol that requires two non-colluding
workers.

Both baselines utilize Shamir’s secret sharing scheme [19]
where the dataset is secret shared among the N workers.
For the (quantized) dataset X, this is achieved by creating
a random polynomial P(z) = X +zZ; + ... + 7' Zr, where Z;
for j € [T] are i.i.d. uniformly distributed random matrices.
This guarantees privacy against LNT_lj colluding workers [10]-
[12], but requires a computation load at each worker that is
as large as processing the whole dataset at a single worker,
leading to slow training. Hence, in order to provide a fair
comparison with CodedPrivateML, we optimize (speed up) the
benchmark protocols by partitioning the users into subgroups of
size 2T + 1. Then, we let each group compute the gradlent over

the partitioned dataset X € FGXd where X = [Xl . XG 17
and G is the number of subgroups. For group i € [G],
each worker receives a share of the partitioned dataset by
using a random polynomial Pj(z) = X/- +zZiv + ...+ X L7,
where Z;; for j € [T] and i € [G] are ii.d. uniformly
distributed random matrices. Workers then proceed with a
multiround protocol to compute the sub-gradient. We further
incorporate our quantization and approximation techniques in
our benchmark implementations as conventional MPC protocols
are also bound to arithmetic operations over a finite field. In
our experiments, we set G = 3, hence the total amount of data
stored at each worker is equal to one third of the size of the
dataset X, which significantly reduces the total training time
of the two benchmarks, while providing a privacy threshold of
T = L%J. The implementation details of the MPC operations
are provided in Appendix D.

CodedPrivateML parameters. There are several system pa-
rameters in CodedPrivateML that should be set. Given that we
have a 64-bit implementation, we select the field size to be
p = 2% — 37, which is the largest prime with 25 bits to avoid
an overflow on intermediate multiplications. We then optimize
the quantization parameters, I, in (4) and /,, in (7), by taking
into account the trade-off between the rounding and overflow
error. In particular, we choose (I, 1) = (2,6) and (2,5) for
the CIFAR-10 and GISETTE datasets, respectively. We also
need to set the parameter r, the degree of the polynomial for
approximating the sigmoid function. We consider both r = 1
and r = 2 and as shown later empirically we observe that
the degree one approximation achieves good accuracy. We
finally need to select T (privacy threshold) and K (amount of

IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, JANUARY 2021

1800 A
—¥— CodedPrivateML, case 1

1600 4 —#— CodedPrivateML, case 2
—— MPC based on [BH08] w/ group

1400 A
1200 -

1000 A

Time (sec)

800 -
600 -

400 -

200 4

T T T T T

T T u T
10 15 20 25 30 35 40 45 50
N (number of workers)

(a) CIFAR-10 (for accuracy 81.35% with 50 iterations)

3500 4 —¥— CodedPrivateML, case 1
—— CodedPrivateML, case 2
3000 + == MPC based on [BH08] w/ group
2500 A

2000 -

Time (sec)

1500 A

1000 A

500 A

10 15 20 25 30 35 40 45 50
N (number of workers)

(b) GISETTE (for accuracy 97.50% with 50 iterations)

Fig. 3. Performance gain of CodedPrivateML over the MPC baseline ((BH08]
from [11]). The plot shows the total training time for different number of
workers N.

TABLE 11
(CIFAR-10) BREAKDOWN OF TOTAL RUNTIME FOR N = 50.

Protocol Enc. Comm. Comp. Total

time (s) time (s) time (s) time (s)

MPC using [BGWS8S] 202.78 31.02 7892.42 8127.07
MPC using [BHOS] 201.08 30.25 1326.03 1572.34
CodedPrivateML (Case 1) 59.93 4.76 141.72 229.07
CodedPrivateML (Case 2) 91.53 830 235.18 361.08

parallelization) in CodedPrivateML. As stated in Theorem 1,
these parameters should satisfy N > 2r + 1)(K +T — 1) + 1.
Given our choice of r = 1, we consider two cases:

o Case 1 (maximum parallelization). All resources allo-

cated for parallelization (faster training) by setting K =
L5, T =1,

« Case 2 (equal parallelization & privacy). Resources split

almost equally between parallelization & privacy, i.e., T =
|N23 K = 252 -7,

Training time. Initially, we measure the training time while
increasing the number of workers N gradually. Our results
are demonstrated in Figure 3, which shows the comparison
of CodedPrivateML with the [BHO8] protocol from [11], as
we have found it to be the faster of the two benchmarks. In

particular, we make the following observations.

3

CodedPrivateML provides substantial speedup over the MPC
baselines, in particular, up to 4.4x and 5.2x with the CIFAR-
10 and GISETTE datasets, respectively, while providing the
same privacy threshold as the benchmarks (7" = LNT_3J for
Case 2). Table II demonstrates the breakdown of the total

3For N = 10, all schemes have similar performance because the total

amount of data stored at each worker is one third of the size of whole dataset
(K =3 for CodedPrivateML and G = 3 for the benchmark).

80 - NN v vV

754

70

65

60

Accuracy (%)

551 —¥— CodedPrivateML
—— Conventional logistic regression

50

20 30 40 50
Iterations

o
24
o

(a) CIFAR-10 dataset, binary classification between car and
plane images (using 9019 samples for the training set and
2000 samples for the test set).

90 -

80

70

Accuracy (%)

60
—¥— CodedPrivateML

—— Conventional logistic regression

50 1

20 30 40 50
Iterations

o
=
o

(b) GISETTE dataset, binary classification between the images
of digits 4 and 9 (using 6000 samples for the training set and
1000 samples for the test set).

Fig. 4. Comparison of the accuracy of CodedPrivateML (demonstrated for
Case 2 and N = 50 workers) vs conventional logistic regression that uses the
sigmoid function without quantization.

runtime with the CIFAR-10 dataset for N = 50 workers. In
this scenario, CodedPrivateML provides significant improve-
ment in all three categories of dataset encoding and secret
sharing; communication time between the workers and the
master; and the computation time. Main reason for this is
that, in the MPC baselines, the size of the data processed
at each worker is one third of the original dataset, while in
CodedPrivateML it is 1/K-th of the dataset. This reduces
the computational overhead of each worker while computing
matrix multiplications as well as the communication overhead
between the master and workers. We also observe that a
higher amount of speedup is achieved as the dimension
of the dataset becomes larger (CIFAR-10 vs. GISETTE
datasets), suggesting CodedPrivateML to be well-suited for
data-intensive training tasks where parallelization is essential.
The total runtime of CodedPrivateML decreases as the
number of workers increases. This is again due to the
parallelization gain of CodedPrivateML (i.e., increasing K
while N increases). This is not achievable in conventional
MPC baselines, since the size of data processed at each
worker is constant for all N.

Increasing N in CodedPrivateML has two major impacts
on the total training time. The first one is reducing the
computation load per worker, as each new worker can be
used to increase the parameter K. This in turn reduces the
computation load per worker as the amount of work done
by each worker is scaled with respect to 1/K. The second
one is that increasing the number of workers increases the
encoding time at the master node. Hence, the gain from
increasing the number of workers beyond a certain point

SO et al.: CODEDPRIVATEML: A FAST AND PRIVACY-PRESERVING FRAMEWORK FOR DISTRIBUTED MACHINE LEARNING 9

0.71 —¥— CodedPrivateML

0.6 —»— Conventional logistic regression
0.5 4
0.4 4

0.3

Cross Entropy

0.2
0.1

0.0 4+— . : : : :
Iterations
Fig. 5. Convergence of CodedPrivateML (demonstrated for Case 2 and N = 50

workers) vs conventional logistic regression (using the sigmoid function without
polynomial approximation or quantization).

may be minimal and the system may saturate. In those cases,
increasing the number of workers cannot further reduce the
training time, as the computation will be dominated by the
encoding overhead.

o CodedPrivateML provides up to 22.5x speedup over the
BGW protocol [10], as shown in Table II for the CIFAR-10
dataset with N = 50 workers. This is due to the fact that BGW
requires additional communication between the workers to
execute a degree reduction phase for every multiplication
operation.

Accuracy. We also examine the accuracy and convergence of
CodedPrivateML. Figure 4(a) illustrates the test accuracy of the
binary classification problem between plane and car images
for the CIFAR-10 dataset. With 50 iterations, the accuracy of
CodedPrivateML with degree one polynomial approximation
and conventional logistic regression are 81.35% and 81.75%,
respectively. Figure 4(b) shows the test accuracy for binary clas-
sification between digits 4 and 9 for the GISETTE dataset. With
50 iterations, the accuracy of CodedPrivateML with degree one
polynomial approximation and conventional logistic regression
has the same value of 97.5%. Hence, CodedPrivateML has
comparable accuracy to conventional logistic regression while
being privacy preserving.

Figure 5 presents the cross entropy loss for CodedPrivateML
versus the conventional logistic regression model for the
GISETTE dataset. The latter setup uses the sigmoid function
and no polynomial approximation, in addition, no quantization
is applied to the dataset or the weight vectors. We observe
that CodedPrivateML achieves convergence with comparable
rate to conventional logistic regression, while being privacy
preserving.

VI. CONCLUSION AND DISCUSSION

In this paper, we considered a distributed training scenario
in which a data-owner wants to train a logistic regression
model by off-loading the computationally-intensive gradient
computations to multiple workers, while preserving the privacy
of the dataset. We proposed a privacy-preserving training
framework, CodedPrivateML, that distributes the computation
load effectively across multiple workers, and reduces the
per-worker computation load as more and more workers
become available. We demonstrated the theoretical convergence
guarantees and the fundamental trade-offs of our framework,
in terms of the number of workers, privacy protection, and
scalability. Our experiment results demonstrate significant

speed-up in the training time compared to conventional baseline
protocols.

This work focuses on a logistic regression model mainly with
the goal of demonstrating how CodedPrivateML can be utilized
to scale and speed up logistic regression training under privacy
and convergence guarantees, which is a first step towards more
complex models. To the best of our knowledge, even for this
setup, no other system has been able to efficiently scale beyond
3—4 workers while achieving information-theoretic privacy. Our
work is the first privacy-preserving machine learning approach
that reduces the communication and computation load per
worker as the number of workers increases, which we hope will
open up further research. Future directions include extending
CodedPrivateML to deeper neural networks by leveraging an
MPC-friendly (i.e., polynomial) activation function or extending
CodedPrivateML to collaborative learning setting such as [46].

In this paper, in order to provide information-theoretic
privacy, we utilize quantization to convert the dataset and model
to the finite field F),. Doing so has two inherent challenges: 1)
determining a proper value for p and 2) potential performance
degradation caused by quantization or overflow error. This has
inspired a new line of works, such as analog coded computing
[47], [48], which uses floating-point numbers instead of fixed-
point numbers to represent the finite field and provides a
fundamental trade-off between the accuracy and privacy level.
Leveraging such techniques to address these challenges is
another interesting future direction.

ACKNOWLEDGEMENT
Authors would like to thank helpful comments and discus-
sions with Dr. Payman Mohassel on this problem.

REFERENCES

[1] T. K. Rodrigues, K. Suto, H. Nishiyama, J. Liu, and N. Kato, “Machine
learning meets computation and communication control in evolving edge
and cloud: Challenges and future perspective,” IEEE Communications
Surveys & Tutorials, vol. 22, no. 1, pp. 38-67, 2019.

T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get

off of my cloud: exploring information leakage in third-party compute

clouds,” in ACM Conf. on Comp. and Comm. Security, 2009, pp. 199-212.

Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-vm side

channels and their use to extract private keys,” in ACM Conf. on Comp.

and Comm. Security. ACM, 2012, pp. 305-316.

, “Cross-tenant side-channel attacks in paas clouds,” in ACM Conf.
on Comp. and Comm. Security, 2014, pp. 990-1003.

[5] Z. Wu, Z. Xu, and H. Wang, “Whispers in the hyper-space: high-

bandwidth and reliable covert channel attacks inside the cloud,”

IEEE/ACM Transactions on Networking, vol. 23, no. 2, pp. 603-615,

2014.

V. Varadarajan, Y. Zhang, T. Ristenpart, and M. Swift, “A placement

vulnerability study in multi-tenant public clouds,” in 24th USENIX

Security Symposium, 2015, pp. 913-928.

[71 K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and H. Bos,
“Flip feng shui: Hammering a needle in the software stack,” in 25th
USENIX Security Symposium, 2016, pp. 1-18.

[8] Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, and A. S.
Avestimehr, “Lagrange coded computing: Optimal design for resiliency,
security and privacy,” in Int. Conf. on Artificial Intelligence and Statistics
(AISTATS), 2019.

[91 A. C. Yao, “Protocols for secure computations,” in [EEE Annual

Symposium on Foundations of Computer Science, 1982, pp. 160—164.

M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness theorems

for non-cryptographic fault-tolerant distributed computation,” in ACM

Symposium on Theory of Computing, 1988, pp. 1-10.

Z. Beerliova-Trubiniova and M. Hirt, “Perfectly-secure MPC with linear

communication complexity,” in Theory of Crypto. Conf. Springer, 2008,

pp- 213-230.

2

[3

[4]

[6

=

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]
[19]

[20]

[21]

[22]

[23

—

[24]

[25]

[26]

(271

(28]

[29]

[30]

[31]

[32]

(33]

(34]

(351

(36]

[37]

IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, JANUARY 2021

I. Damgard and J. B. Nielsen, “Scalable and unconditionally secure
multiparty computation,” in International Cryptology Conf. Springer,
2007, pp. 572-590.

V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and
N. Taft, “Privacy-preserving ridge regression on hundreds of millions
of records,” in IEEE Symposium on Security and Privacy, 2013, pp.
334-348.

A. Gascon, P. Schoppmann, B. Balle, M. Raykova, J. Doerner, S. Zahur,
and D. Evans, “Privacy-preserving distributed linear regression on high-
dimensional data,” in Priv. Enhancing Technologies, no. 4, 2017, pp.
345-364.

P. Mohassel and Y. Zhang, “SecureML: A system for scalable privacy-
preserving machine learning,” in IEEE Symp. on Sec. and Privacy, 2017,
pp. 19-38.

Y. Lindell and B. Pinkas, “Privacy preserving data mining,” in Annual
International Cryptology Conference. Springer, 2000, pp. 36-54.

M. Dahl, J. Mancuso, Y. Dupis, B. Decoste, M. Giraud, 1. Livingstone,
J. Patriquin, and G. Uhma, “Private machine learning in TensorFlow
using secure computation,” arXiv:1810.08130, 2018.

V. Chen, V. Pastro, and M. Raykova, “Secure computation for machine
learning with SPDZ,” arXiv:1901.00329, 2019.

A. Shamir, “How to share a secret,” Communications of the ACM, vol. 22,
no. 11, pp. 612-613, 1979.

S. Wagh, D. Gupta, and N. Chandran, “SecureNN: Efficient and private
neural network training,” Cryptology ePrint Archive, Report 2018/442,
2018, https://eprint.iacr.org/2018/442.

P. Mohassel and P. Rindal, “ABY 3: A mixed protocol framework for
machine learning,” in ACM Conf. on Comp. and Comm. Security, 2018,
pp. 35-52.

A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” Citeseer, Tech. Rep., 2009.

I. Guyon, S. Gunn, A. Ben-Hur, and G. Dror, “Result analysis of the nips
2003 feature selection challenge,” in Advances in Neural Inf. Processing
Systems, 2005, pp. 545-552.

C. Gentry and D. Boneh, A fully homomorphic encryption scheme.
Stanford University, Stanford, 2009, vol. 20, no. 09.

R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, “Cryptonets: Applying neural networks to encrypted data
with high throughput and accuracy,” in Int. Conf. on Mach. Learning,
2016, pp. 201-210.

E. Hesamifard, H. Takabi, and M. Ghasemi, “CryptoDL: Deep neural
networks over encrypted data,” arXiv:1711.05189, 2017.

T. Graepel, K. Lauter, and M. Naehrig, “ML confidential: Machine
learning on encrypted data,” in Int. Conf. on Inf. Sec. and Crypto., 2012,
pp. 1-21.

J. Yuan and S. Yu, “Privacy preserving back-propagation neural network
learning made practical with cloud computing,” IEEE Transactions on
Parallel and Distributed Systems, vol. 25, no. 1, pp. 212-221, 2014.
H. Chabanne, A. de Wargny, J. Milgram, C. Morel, and E. Prouff,
“Privacy-preserving classification on deep neural network.” JACR Cryptol.
ePrint Arch., vol. 2017, p. 35, 2017.

P. Li, J. Li, Z. Huang, C.-Z. Gao, W.-B. Chen, and K. Chen, “Privacy-
preserving outsourced classification in cloud computing,” Cluster Com-
puting, pp. 1-10, 2017.

A. Kim, Y. Song, M. Kim, K. Lee, and J. H. Cheon, “Logistic regression
model training based on the approximate homomorphic encryption,” BMC
Medical Genomics, vol. 11, no. 4, pp. 23-55, Oct 2018.

Q. Wang, M. Du, X. Chen, Y. Chen, P. Zhou, X. Chen, and X. Huang,
“Privacy-preserving collaborative model learning: The case of word vector
training,” IEEE Trans. on Knowledge and Data Engineering, vol. 30,
no. 12, pp. 2381-2393, Dec 2018.

K. Han, S. Hong, J. H. Cheon, and D. Park, “Logistic regression on
homomorphic encrypted data at scale,” in Annual Conf. on Innovative
Applications of Artificial Intelligence, 2019.

C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to
sensitivity in private data analysis,” in Theory of Crypto. Conf. Springer,
2006, pp. 265-284.

K. Chaudhuri and C. Monteleoni, “Privacy-preserving logistic regression,
in Advances in Neural Information Processing Systems, 2009, pp. 289—
296.

R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in ACM
Conf. on Comp. and Comm. Security, 2015, pp. 1310-1321.

M. Abadi, A. Chu, I. Goodfellow, H. B. McMabhan, 1. Mironov, K. Talwar,
and L. Zhang, “Deep learning with differential privacy,” in ACM Conf.
on Comp. and Comm. Security, 2016, pp. 308-318.

>

(38]

[39]

[40]

[41]

[42]

[43]

[44]
[45]

[46]

[47]

[48]

M. Pathak, S. Rane, and B. Raj, “Multiparty differential privacy
via aggregation of locally trained classifiers,” in Advances in Neural
Information Processing Systems, 2010, pp. 1876—-1884.

H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang, “Learning
differentially private recurrent language models,” in Int. Conf. on Lear:
Repr., 2018.

A. Rajkumar and S. Agarwal, “A differentially private stochastic gradient
descent algorithm for multiparty classification,” in Int. Conf. on Artificial
Intelligence and Statistics (AISTATS 12), 2012, pp. 933-941.

B. Jayaraman, L. Wang, D. Evans, and Q. Gu, “Distributed learning
without distress: Privacy-preserving empirical risk minimization,” in
Advances in Neural Information Processing Systems, 2018, pp. 6346—
6357.

H. Zhang, J. Li, K. Kara, D. Alistarh, J. Liu, and C. Zhang, “ZipML:
Training linear models with end-to-end low precision, and a little bit of
deep learning,” in Int. Conf. on Machine Learning, Sydney, Australia,
Aug 2017, pp. 4035-4043.

, “The ZipML framework for training models with end-to-end
low precision: The cans, the cannots, and a little bit of deep learning,”
arXiv:1611.05402, 2016.

S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.
Cambridge university press, 2004.

L. Dalcin, R. Paz, and M. Storti, “MPI for Python,” Journal of Parallel
and Distributed Computing, vol. 65, no. 9, pp. 1108-1115, 2005.

J. So, B. Guler, and A. S. Avestimehr, “A scalable approach for privacy-
preserving collaborative machine learning,” in Advances in Neural
Information Processing Systems, 2020.

M. Soleymani, H. Mahdavifar, and A. S. Avestimehr, “Analog lagrange
coded computing,” arXiv preprint arXiv:2008.08565, 2020.

——, “Privacy-preserving distributed learning in the analog domain,”
arXiv preprint arXiv:2007.08803, 2020.

Jinhyun So received the B.S. and M.S. degrees in
electrical and computer engineering from KAIST. He
is currently pursuing the Ph.D. degree in electrical
and computer engineering at University of Southern
California (USC). He received the Annenberg Gradu-
ate Fellowship in 2017. His research interests include
information theory, large-scale distributed machine
learning, and secure and private computing.

Basak Giiler (Member, IEEE) is an Assistant Pro-
fessor in the Department of Electrical and Computer
Engineering at University of California, Riverside.
She has received her PhD from the Pennsylvania State
university in 2017, and was a postdoctoral scholar
at University of Southern California between 2018-
2020. Her research interests include machine learning
in wireless networks, information theory, distributed
computing, and signal processing.

A. Salman Avestimehr (Fellow, IEEE) is a Professor
and director of the Information Theory and Machine
Learning (VITAL) research lab at the Electrical and
Computer Engineering Department of University of
Southern California. He received his Ph.D. in 2008
and M.S. degree in 2005 in Electrical Engineering
and Computer Science, both from the University of
California, Berkeley. Prior to that, he obtained his
B.S. in Electrical Engineering from Sharif University
of Technology in 2003. His research interests include
information theory and coding theory, and large-scale

distributed computing and machine learning, secure and private computing,
and blockchain systems.

Dr. Avestimehr has received a number of awards for his research, including
the James L. Massey Research & Teaching Award from IEEE Information
Theory Society, an Information Theory Society and Communication Society
Joint Paper Award, a Presidential Early Career Award for Scientists and
Engineers (PECASE) from the White House (President Obama), a Young
Investigator Program (YIP) award from the U. S. Air Force Office of Scientific
Research, a National Science Foundation CAREER award, the David J.
Sakrison Memorial Prize, and several Best Paper Awards at Conferences.
He has been an Associate Editor for IEEE Transactions on Information Theory
and a general Co-Chair of the 2020 International Symposium on Information
Theory (ISIT). He is a fellow of IEEE.

