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Abstract

We consider a collaborative learning scenario in which multiple data-owners wish
to jointly train a logistic regression model, while keeping their individual datasets
private from the other parties. We propose COPML, a fully-decentralized training
framework that achieves scalability and privacy-protection simultaneously. The
key idea of COPML is to securely encode the individual datasets to distribute
the computation load effectively across many parties and to perform the train-
ing computations as well as the model updates in a distributed manner on the
securely encoded data. We provide the privacy analysis of COPML and prove
its convergence. Furthermore, we experimentally demonstrate that COPML can
achieve significant speedup in training over the benchmark protocols. Our protocol
provides strong statistical privacy guarantees against colluding parties (adversaries)
with unbounded computational power, while achieving up to 16 x speedup in the
training time against the benchmark protocols.

1 Introduction

Machine learning applications can achieve significant performance gains by training on large volumes
of data. In many applications, the training data is distributed across multiple data-owners, such as
patient records at multiple medical institutions, and furthermore contains sensitive information, e.g.,
genetic information, financial transactions, and geolocation information. Such settings give rise to
the following key problem that is the focus of this paper: How can multiple data-owners jointly train
a machine learning model while keeping their individual datasets private from the other parties?

More specifically, we consider a distributed learning scenario in which N data-owners (clients)
wish to train a logistic regression model jointly without revealing information about their individual
datasets to the other parties, even if up to 7" out of IV clients collude. Our focus is on the semi-honest
adversary setup, where the corrupted parties follow the protocol but may leak information in an
attempt to learn the training dataset. To address this challenge, we propose a novel framework,
COPMLE], that enables fast and privacy-preserving training by leveraging information and coding
theory principles. COPML has three salient features:

e speeds up the training time significantly, by distributing the computation load effectively across a
large number of parties,

'COPML stands for collaborative privacy-preserving machine learning.
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e advances the state-of-the-art privacy-preserving training setups by scaling to a large number of
parties, as it can distribute the computation load effectively as more parties are added in the system,

e utilizes coding theory principles to secret share the dataset and model parameters which can
significantly reduce the communication overhead and the complexity of distributed training.

At a high level, COPML can be described as follows. Initially, the clients secret share their individual
datasets with the other parties, after which they carry out a secure multi-party computing (MPC)
protocol to encode the dataset. This encoding operation transforms the dataset into a coded form
that enables faster training and simultaneously guarantees privacy (in an information-theoretic
sense). Training is performed over the encoded data via gradient descent. The parties perform the
computations over the encoded data as if they were computing over the uncoded dataset. That is, the
structure of the computations are the same for computing over the uncoded dataset versus computing
over the encoded dataset. At the end of training, each client should only learn the final model, and no
information should be leaked (in an information-theoretic sense) about the individual datasets or the
intermediate model parameters, beyond the final model.

We characterize the theoretical performance guarantees of COPML, in terms of convergence, scala-
bility, and privacy protection. Our analysis identifies a trade-off between privacy and parallelization,
such that, each additional client can be utilized either for more privacy, by protecting against a larger
number of collusions 7°, or more parallelization, by reducing the computation load at each client.
Furthermore, we empirically demonstrate the performance of COPML by comparing it with crypto-
graphic benchmarks based on secure multi-party computing (MPC) [39, 4 3| [12]], that can also be
applied to enable privacy-preserving machine learning tasks (e.g. see [30} [14, 128} 25, [10} I8} 137, 27])).
Given our focus on information-theoretic privacy, the most relevant MPC-based schemes for empirical
comparison are the protocols from [4] and [3, [12] based on Shamir’s secret sharing [33]. While
several more recent works have considered MPC-based learning setups with information-theoretic
privacy [37, 27], their constructions are limited to three or four parties.

We run extensive experiments over the Amazon EC2 cloud platform to empirically demonstrate
the performance of COPML. We train a logistic regression model for image classification over the
CIFAR-10 [23] and GISETTE [18] datasets. The training computations are distributed to up to
N = 50 parties. We demonstrate that COPML can provide significant speedup in the training time
against the state-of-the-art MPC baseline (up to 16.4x), while providing comparable accuracy to
conventional logistic regression. This is primarily due to the parallelization gain provided by our
system, which can distribute the workload effectively across many parties.

Other related works. Other than MPC-based setups, one can consider two notable approaches. The
first one is Homomorphic Encryption (HE) [15]], which enables computations on encrypted data, and
has been applied to privacy-preserving machine learning [16, 120, 17,41, 124} 22,138, [19]. The privacy
protection of HE depends on the size of the encrypted data, and computing in the encrypted domain is
computationally intensive. The second approach is differential privacy (DP), which is a noisy release
mechanism to protect the privacy of personally identifiable information. The main application of DP
in machine learning is when the model is to be released publicly after training, so that individual data
points cannot be backtracked from the released model [[7, 34} 1}, 131} 26, 132 21]]. On the other hand,
our focus is on ensuring privacy during training, while preserving the accuracy of the model.

2 Problem Setting

We consider a collaborative learning scenario in which the training dataset is distributed across N
clients. Client j € [N] holds an individual dataset denoted by a matrix X; € R™*< consisting of
m; data points with d features, and the corresponding labels are given by a vector y; € {0,1}™3. The
overall dataset is denoted by X = [X,..., X \]" consisting of m £ je[n) My data points with
d features, and corresponding labels y = [y, ... 7yJT,]T, which consists of N individual datasets
each one belonging to a different client. The clients wish to jointly train a logistic regression model
w over the training set X with labels y, by minimizing a cross entropy loss function,
1 — R N
C(w) = EZ(_yi log §; — (1 — y;)log(1 — 9:)) (1
i=1

where §; = g(x; - w) € (0, 1) is the probability of label i being equal to 1, x; is the i*" row of matrix
X, and g(-) denotes the sigmoid function g(z) = 1/(1 + e~ #). The training is performed through
gradient descent, by updating the model parameters in the opposite direction of the gradient,
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where VC(w) = 2XT(g(X x w) — y) is the gradient for (T), w(®) holds the estimated parameters
from iteration ¢, 7 is the learning rate, and function g(-) acts element-wise over the vector X X w®),

During training, the clients wish to protect the privacy of their individual datasets from other clients,
even if up to T of them collude, where T is the privacy parameter of the system. There is no
trusted party who can collect the datasets in the clear and perform the training. Hence, the training
protocol should preserve the privacy of the individual datasets against any collusions between up to
T adversarial clients. More specifically, this condition states that the adversarial clients should not
learn any information about the datasets of the benign clients beyond what can already be inferred
from the adversaries’ own datasets.

To do so, client j € [V] initially secret shares its individual dataset X; and y; with the other parties.
Next, clients carry out a secure MPC protocol to encode the dataset by using the received secret
shares. In this phase, the dataset X is first partitioned into K submatrices X = [X{, -+, X /]
for some K € N. Parameter K characterizes the computation load at each client. Specifically, our
system ensures that the computation load (in terms of gradient computations) at each client is equal
to processing only (1/K)*" of the entire dataset X. The clients then encode the dataset by combining
the K submatrices together with some randomness to preserve privacy. At the end of this phase,

client i € [N] learns an encoded dataset X, whose size is equal to (1/K)" of the dataset X. This
process is only performed once for the dataset X.

At each iteration of training, clients also encode
the current estimation of the model parameters
w(®) using a secure MPC protocol, after which
client ¢ € [N] obtains the encoded model Wgt).
Client ¢ € [N] then computes a local gradient

X[ g(Xi x w") over the encoded dataset X;

and encoded model v~v£t). After this step, clients

carry out another secure MPC protocol to de-
code the gradient X" g(X x w(?)) and update
the model according to (2). As the decoding T g client j

and model updates are performed using a secure

MPC protocol, clients do not learn any informa- Figure 1: The multi-client distributed training
tion about the actual gradients or the updated setup with N clients. Client j € [N] holds a
model. In particular, client 7 € [IV] only learns dataset X; with labels y;. At the beginning of
a secret share of the updated model, denoted training, client j secret shares X; and y; to guar-
by [W(tﬂ)]i- Using the secret shares [w(t“)]i, antee their information-theoretic privacy against
clients i € [ N] encode the model w(t+1) for any collusions between up to 7' clients. The secret
share of X; and y; assigned from client j to client
i is represented by [X;]; and [y];, respectively.

client i

B
S5

the next iteration, after which client 7 learns an
encoded model w''™V). Figure|l{demonstrates

i

our system architecture.

3 The COPML Framework

COPML consists of four main phases: quantization; encoding and secret sharing; polynomial approx-
imation; decoding and model update, as demonstrated in Figure 2] In the first phase, quantization,
each client converts its own dataset from the real domain to finite field. In the second phase, clients
create a secret share of their quantized datasets and carry out a secure MPC protocol to encode the
datasets. At each iteration, clients also encode and create a secret share of the model parameters. In
the third phase, clients perform local gradient computations over the encoded datasets and encoded
model parameters by approximating the sigmoid function with a polynomial. Then, in the last phase,
clients decode the local computations and update the model parameters using a secure MPC protocol.
This process is repeated until the convergence of the model parameters.

Phase 1: Quantization. Computations involving secure MPC protocols are bound to finite field
operations, which requires the representation of real-valued data points in a finite field F. To do so,
each client initially quantizes its dataset from the real domain to the domain of integers, and then



embeds it in a field IF,, of integers modulo a prime p. Parameter p is selected to be sufficiently large
to avoid wrap-around in computations. For example, in a 64-bit implementation with the CIFAR-10
dataset, we select p = 226 — 5. The details of the quantization phase are provided in Appendix

Phase 2: Encoding and secret sharing. In this
phase, client j € [N] creates a secret share of |

r N A Quantization (dataset) |
its quantized dataset X; designated for each
client i € [N] (including client j itself). The [ Encoding and Secret sharing (dataset) |
secret shares are constructed via Shamir’s se-
cret sharing with threshold T [33], to protect | Encodingand Secretsharing (model)  Je——
the privacy of the individual datasets against _
any collusions between up to 7' clients. To Polynomial Approximation and Until
3 : . Local computation convergence

do so, client j creates a random polynomial,
h;i(z) = X; +2Rj1 + ...+ 2T R where R;; _

I\ J o or . g J% Decoding and model updat
for i € [T are i.i.d. uniformly distributed ran- | S -
dom matrices, and selects [V distinct evaluation Figure 2: Flowchart of COPML.

points A1, ..., Ay from IF,,. Then, client j sends

client i € [N] a secret share [X;]; £ h;();) of its dataset X;. Client j also sends a secret share of
its labels y; to client ¢ € [N], denoted by [y;];. Finally, the model is initialized randomly within a
secure MPC protocol between the clients, and at the end client i € [N] obtains a secret share [w(®)];
of the initial model w (%),

After obtaining the secret shares [X;]; for j € [IV], clients ¢ € [IV] encode the dataset using a secure
MPC protocol and transform it into a coded form, which speeds up the training by distributing the
computation load of gradient evaluations across the clients. Our encoding strategy utilizes Lagrange
coding from [40ﬂ which has been applied to other problems such as privacy-preserving offloading
of a training task [36] and secure federated learning [35]. However, we encode (and later decode) the
secret shares of the datasets and not their true values. Therefore, clients do not learn any information
about the true value of the dataset X during the encoding-decoding process.

The individual steps of the encoding process are as follows. Initially, the dataset X is partitioned

into K submatrices X = [X[,..., X ] where X, € F}X “Ufor k € [K]. To do so, client i € [N]
locally concatenates [X;]; for j € [N] and partitions it into K parts, [Xy]; for k € [K]. Since this
operation is done over the secret shares, clients do not learn any information about the original dataset
X. Parameter K quantifies the computation load at each client, as will be discussed in Section 4]

The clients agree on K + T distinct elements {3 }rec(x+7) and N distinct elements {o; }ic[n
from ¥, such that {c; };c;n) N {Br }re[x+7] = 9. Client i € [N] then encodes the dataset using a

Lagrange interpolation polynomial v : I, — Fp% *“? with degree at most K + 71 — 1,

wz)li & Y Xl ] 2P + Ki:T zii- ] Lﬁl7 3)
ke[K] et TP S ey P T

whereﬁ(ﬁk)]i = [Xj]; for k € [K] and i € [N]. The matrices Zj, are generated uniformly at

myq . L .
random’| from [F,X *% and [Z1]; is the secret share of Z, at client 4. [Zy]; is the secret share of Zj, at

client ¢. Client ¢ € [N] then computes and sends [f(j]l £ [u(«;)]; to client j € [N]. Upon receiving
{[X}]i}iens client j € [N] can recover the encoded matrix X;[*| The role of Z;’s are to mask the
dataset so that the encoded matrices X; reveal no information about the dataset X, even if up to T
clients collude, as detailed in Section [4}

Using the secret shares [X;]; and [y;];, clients i € [N] also compute X" y = 2 i XTy; using a
secure multiplication protocol (see Appendix [A.3]for details). At the end of this step, clients learn a
secret share of X” y, which we denote by [X" y]; for clienti € N.

*Encoding of Lagrange coded computing is the same as a packed secret sharing [13]).

3The random parameters can be generated by a crypto-service provider in an offline manner, or by using
pseudo-random secret sharing [9].

*In fact, gathering only T + 1 secret shares is sufficient to recover X;, due to the construction of Shamir’s
secret sharing [33]]. Using this fact, one can speed up the execution by dividing the N clients into subgroups of
T + 1 and performing the encoding locally within each subgroup. We utilize this property in our experiments.



At iteration ¢, client ¢ initially holds a secret share of the current model, [W(t)]i, and then encodes the
model via a Lagrange interpolation polynomial v : F,, — Fg with degree at most K + 7T — 1,

K+T

L2 > WL ] ; __”BBZ + 3 v 1 ; __ﬁﬁl @)
ke (K] le[k+T\{k} F TP k=K1 e[k +T\(k} F T
where [v(B1));i = [w®]; for k € [K] and i € [N]. The vectors V( ) are generated uniformly at

random from Fg. Client ¢ € [N] then sends [~(t)} £ [v(a;)]; to client j € [N]. Upon receiving

{[W;t)]i}ie[ n]» client j € [N] recovers the encoded model v~v§-t).

Phase 3: Polynomial Approximation and Local Computations. Lagrange encoding can be used
to compute polynomial functions only, whereas the gradient computations in (2) are not polynomial
operations due to the sigmoid function. To this end, we approximate the sigmoid with a polynomial,

G§(z) = Zr:cizi, 5
i=0

where 7 and ¢; represent the degree and coefficients of the polynomial, respectively. The coefficients
are evaluated by fitting the sigmoid to the polynomial function via least squares estimation. Using
this polynomial approximation, we rewrite the model update from (2 as,

wltH ) = w® X (5(X x wlt) — y), (©)

Client ¢ € [N] then locally computes the gradient over the encoded dataset, by evaluating a function,
~ ~T ~

fXi ) = X, §(Xi < w (") )

and secret shares the result with the other clients, by sending a secret share of (7)), [f (X;, v~v£t))] j» to

client j € [N]. At the end of this step, client j holds the secret shares [f (f(i, Wgt))} ; corresponding
to the local computations from clients ¢ € [IN]. Note that (7) is a polynomial function evaluation in
the finite field arithmetic and the degree of function f is deg(f) = 2r + 1.

Phase 4: Decoding and Model Update. In this phase, clients perform the decoding of the gradient
using a secure MPC protocol, through polynomial interpolation over the secret shares | f (Xl, W (t) );-
The minimum number of clients needed for the decoding operation to be successful, which we call
the recovery threshold of the protocol, is equal to (21 + 1)(K +T — 1) + 1. In order to show this, we
first note that, from the definition of Lagrange polynomials in (3) and (@), one can define a univariate

polynomial h(z) = f(u(z),v(z)) such that

h(Bi) = f(u(B),v(B:) = f(Xiw®) = X[ g(X; x w®) ®)
for ¢ € [K]. Moreover, from (7)), we know that client ¢ performs the following computation,
~ - ~ T = .
hai) = f(ulei),v(a) = (i W) = X, §(X; < w("). ©)

The decoding process is based on the intuition that, the computations from (9) can be used as
evaluation points h(c;) to interpolate the polynomial h(z). Since the degree of the polynomial h(z)
is deg(h(z)) < (2r +1)(K + T — 1), all of its coefficients can be determined as long as there are at
least (2r + 1)(K + T — 1) + 1 evaluation points available. After h(z) is recovered, the computation
results in (8] correspond to h(g;) for i € [K].

Our decoding operation corresponds to a finite-field polynomial interpolation problem. More

specifically, upon receiving the secret shares of the local computations [ f (Xj, v~vl§-t) )]; from at least

(2r +1)(K 4+ T — 1) + 1 clients, client 5 locally computes
5 ot Br —au
[f(Xk,W(t)>]i & Z [f(XJHWJ(' ))]z : H o —a (10)
JEL; lez\{j} 0

for k € [K], where Z; C [N] denotes the set of the (2r + 1)(K + T — 1) + 1 fastest clients who send
t

their secret share [ f (X Wj( ))]z to client i.



After this step, client i locally aggregates its secret shares [f(Xy,w®)]; to compute
Zszl [f (X, w®)];, which in turn is a secret share of X” §(X x w(®)) since,

K K
> X, w®) =3 X §(Xp x wh) = X T (X x wit)), (11)
k=1 k=1

Let (X" §(X x w)]; 2 S5 [f(Xg, w®)]; denote the secret share of (TT) at client i. Client
i then computes [X ' (X x w®)]; — [X" y];, which in turn is a secret share of the gradient

XT(§(X x w®)) — y). Since the decoding operations are carried out using the secret shares, at the
end of the decoding process, the clients only learn a secret share of the gradient and not its true value.

Next, clients update the model according to (6) using a secure MPC protocol, using the secret shared
model [w(?)]; and the secret share of the gradient [X ™ §(X x w()]; — [XT y];. A major challenge
in performing the model update in (6) in the finite field is the multiplication with parameter -, where
-1 < 1. In order to perform this operation in the finite field, one potential approach is to treat it as
a computation on integer numbers and preserve full accuracy of the results. This in turn requires a
very large field size as the range of results grows exponentially with the number of multiplications,
which becomes quickly impractical as the number of iterations increase [28]]. Instead, we address this
problem by leveraging the secure truncation technique from [6]]. This protocol takes secret shares [a];
of a variable a as input as well as two public integer parameters k; and ko such that a € Fqyr, and
0 < k1 < ka. The protocol then returns the secret shares [z]; for i € [N] such that z = |55 | + s

where s is a random bit with probability P(s = 1) = (a mod 2*1)/(2¥1). Accordingly, the protocol
rounds a/(2*1) to the closest integer with probability 1 — 7, with 7 being the distance between

a/(2%) and that integer. The truncation operation ensures that the range of the updated model always
stays within the range of the finite field.

Since the model update is carried out using a secure MPC protocol, at the end of this step, client

i € [N] learns only a secret share [w(**1)]; of the updated model w(**1), and not its actual value. In

the next iteration, using [w**1];, client i € [N] locally computes [VNVYH)]i from (@) and sends it to

client j € [N]. Client j then recovers the encoded model VNV;HU, which is used to compute (7).
The implementation details of the MPC protocols are provided in Appendix [A.3] The overall
algorithm for COPML is presented in Appendix [A.5]

4 Convergence and Privacy Guarantees

Consider the cost function in with the quantized dataset, and denote w* as the optimal model
parameters that minimize (T)). In this subsection, we prove that COPML guarantees convergence to
the optimal model parameters (i.e., w*) while maintaining the privacy of the dataset against colluding
clients. This result is stated in the following theorem.

Theorem 1. For training a logistic regression model in a distributed system with N clients using
the quantized dataset X = [X] ..., X ], initial model parameters w'®), and constant step size
n < 1/L (where L = 1||X[|3), COPML guarantees convergence,

J 2
1 0) — w*
]E[C’(ij(t))] —C(w*) < Iw= =l QWW I o2 (12)
t=0

in J iterations, for any N > (2r + 1)(K +T — 1) + 1, where r is the degree of the polynomial in (3))
and o2 is the variance of the quantization error of the secure truncation protocol.

Proof. The proof of Theorem [I]is presented in Appendix [A.2] O

As for the privacy guarantees, COPML protects the statistical privacy of the individual dataset of
each client against up to 7" colluding adversarial clients, even if the adversaries have unbounded
computational power. The privacy protection of COPML follows from the fact that all building
blocks of the algorithm guarantees either (strong) information-theoretic privacy or statistical privacy
of the individual datasets against any collusions between up to 7' clients. Information-theoretic
privacy of Lagrange coding against 7' colluding clients follows from [40]. Moreover, encoding,
decoding, and model update operations are carried out in a secure MPC protocol that protects the
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Figure 3: Performance gain of COPML over the MPC baseline ([BHO08] from [3]]). The plot shows
the total training time for different number of clients NV with 50 iterations.

information-theoretic privacy of the corresponding computations against 7" colluding clients [4, 3} [12].
Finally, the (statistical) privacy guarantees of the truncation protocol follows from [6].

Remark 1. (Privacy-parallelization trade-off) Theorem [I] reveals an important trade-off between
privacy and parallelization in COPML. Parameter K reflects the amount of parallelization. In
particular, the size of the encoded matrix at each client is equal to (1/K )" of the size of X. Since
each client computes the gradient over the encoded dataset, the computation load at each client is
proportional to processing (1/K)*" of the entire dataset. As K increases, the computation load
at each client decreases. Parameter T reflects the privacy threshold of COPML. In a distributed
system with N clients, COPML can achieve any K and T"aslongas N > (2r + 1)(K + 7 —1) + 1.
Moreover, as the number of clients [V increases, parallelization (X') and privacy (1") thresholds of
COPML can also increase linearly, providing a scalable solution. The motivation behind the encoding
process is to distribute the load of the computationally-intensive gradient evaluations across multiple
clients (enabling parallelization), and to protect the privacy of the dataset.

Remark 2. Theorem|I]also holds for the simpler linear regression problem.

5 Experiments

We demonstrate the performance of COPML compared to conventional MPC baselines by examining
two properties, accuracy and performance gain, in terms of the training time on the Amazon EC2
Cloud Platform.

5.1 Experiment setup

Setup. We train a logistic regression model for binary image classification on the CIFAR-10 [23]
and GISETTE [18] datasets, whose size is (m,d) = (9019, 3073) and (6000, 5000), respectively.
The dataset is distributed evenly across the clients. The clients initially secret share their individual
datasets with the other clientsE] Computations are carried out on Amazon EC2 m3 . x1arge machine
instances. We run the experiments in a WAN setting with an average bandwidth of 40M bps.
Communication between clients is implemented using the MPI 4Py [11] interface on Python.

Implemented schemes. We implement four schemes for performance evaluation. For COPML, we
consider two set of key parameters (K, T) to investigate the trade-off between parallelization and
privacy. For the baselines, we apply two conventional MPC protocols (based on [4] and [3]) to our
multi-client problem settingE]

1. COPML. In COPML, MPC is utilized to enable secure encoding and decoding for Lagrange
coding. The gradient computations are then carried out using the Lagrange encoded data. We
determine T (privacy threshold) and K (amount of parallelization) in COPML as follows. Initially,
we have from Theorem [I] that these parameters must satisfy N > (2r + 1)(K + T — 1) + 1 for
our framework. Next, we have considered both » = 1 and r = 3 for the degree of the polynomial
approximation of the sigmoid function and observed that the degree one approximation achieves
good accuracy, as we demonstrate later. Given our choice of » = 1, we then consider two setups:

3This can be done offline as it is an identical one-time operation for both MPC baselines and COPML.
8As described in the Section there is no prior work at our scale (beyond 3-4 parties), hence we implement
two baselines based on well-known MPC protocols which are also the first implementations at our scale.
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Figure 4: Comparison of the accuracy of COPML (demonstrated for Case 2 and N = 50 clients) vs
conventional logistic regression that uses the sigmoid function without quantization.

Case 1: (Maximum parallelization gain) Allocate all resources to parallelization (fastest training),
by letting K = [ | and T = 1,
Case 2: (Equal parallelization and privacy gain) Split resources almost equally between paral-

lelization and privacy, ie., T = [Y=3 | K = [M£2| — T,

2. Baseline protocols. We implement two conventional MPC protocols (based on [4] and [3l]).
In a naive implementation of these protocols, each client would secret share its local dataset
with the entire set of clients, and the gradient computations would be performed over the secret
shared data whose size is as large as the entire dataset, which leads to a significant computational
overhead. For a fair comparison with COPML, we speed up the baseline protocols by partitioning
the clients into three groups, and assigning each group one third of the entire dataset. Hence,
the total amount of data processed at each client is equal to one third of the size of the entire
dataset, which significantly reduces the total training time while providing a privacy threshold
of T'= | 2=2 |, which is the same privacy threshold as Case 2 of COPML. The details of these

. 6 . . .
implementations are presented in Appendix [A.4]

In all schemes, we apply the MPC truncation protocol from Section[3|to carry out the multiplication
with = during model updates, by choosing (k1, k2) = (21,24) and (22, 24) for the CIFAR-10 and
GISETTE datasets, respectively.

5.2 Performance evaluation

Training time. In the first set of experiments, we measure the training time. Our results are
demonstrated in Figure [3] which shows the comparison of COPML with the protocol from [3],
as we have found it to be the faster of the two baselines. Figures and demonstrate that
COPML provides substantial speedup over the MPC baseline, in particular, up to 8.6 x and 16.4 x
with the CIFAR-10 and GISETTE datasets, respectively, while providing the same privacy threshold
T. We observe that a higher amount of speedup is achieved as the dimension of the dataset becomes
larger (CIFAR-10 vs. GISETTE datasets), suggesting COPML to be well-suited for data-intensive
distributed training tasks where parallelization is essential.

To further investigate the gain of  Typje 1: Breakdown of the running time with N = 50 clients.
COPML, in Table [T| we present

the breakdown of the total run- Protocol ticrﬁgn(z') E;r:?s) EI;CILD(S)C Tt?rfel E:l)n
ning time with the CIFAR-10 MPC using (BGWSS8] | 918 21142 324 22384
dataset for N = 50 clients. We MPC using [BHOS] 914 6812 189 7915
observe that COPML provides COPML (Case 1) 141 284 15 440
K /3 times speedup for the com- COPML (Case 2) 240 654 22 916

putation time of matrix multipli-

cation in (7)), which is given in the first column. This is due to the fact that, in the baseline protocols,
the size of the data processed at each client is one third of the entire dataset, while in COPML
itis (1/K)" of the entire dataset. This reduces the computational overhead of each client while
computing matrix multiplications. Moreover, COPML provides significant improvement in the
communication, encoding, and decoding time. This is because the two baseline protocols require
intensive communication and computation to carry out a degree reduction step for secure multi-
plication (encoding and decoding for additional secret shares), which is detailed in Appendix



Table 2: Complexity summary of COPML.

Communication  Computation Encoding
O(meN L gNJ)  O(mL)  o(maNELT) L gN(K +T)J)

In contrast, COPML only requires secure addition and multiplication-by-a-constant operations for
encoding and decoding. These operations require no communication. In addition, the communication,
encoding, and decoding overheads of each client are also reduced due to the fact that the size of the
data processed at each client is only (1/K )" of the entire dataset.

Accuracy. We finally examine the accuracy of COPML. Figures @(a)] and demonstrate that
COPML with degree one polynomial approximation provides comparable test accuracy to conven-
tional logistic regression. For the CIFAR-10 dataset in Figure the accuracy of COPML and
conventional logistic regression are 80.45% and 81.75%, respectively, in 50 iterations. For the
GISETTE dataset in Figure f(b)] the accuracy of COPML and conventional logistic regression have
the same value of 97.5% in 50 iterations. Hence, COPML has comparable accuracy to conventional
logistic regression while also being privacy preserving.

5.3 Complexity Analysis

In this section, we analyze the asymptotic complexity of each client in COPML with respect to the
number of clients N, model dimension d, number of data points m, parallelization parameter K,
privacy parameter 7', and total number of iterations J. Client ?’s communication cost can be broken

to three parts: 1) sending the secret shares [)Nij]l = [u(e;)]; in @) to client j € [N], 2) sending the
secret shares [v~v§.t)]i = [v(e;)]; in @) to client j € [N]fort € {0,...,J — 1}, and 3) sending the

secret share of local computation [f(X;, W(t))]j in (7) to client j € [N]fort € {0,...,J — 1}. The

communication cost of the three parts are O(2Y¥), O(dNJ), and O(dN J), respectively. Therefore,
the overall communication cost of each client is O(% + dNJ). Client i’s computation cost of
encoding can be broken into two parts, encoding the dataset by using (3) and encoding the model by

using (@). The encoded dataset [X;]; = [u(c;)]; from (@) is a weighted sum of K + 71" matrices where

. mxd .
each matrix belongs to Fj* ¢ As there are N encoded dataset and each encoded dataset requires a

(md(K+T) ) mdN (K+T)
K

computation cost of O , the computation cost of encoding the dataset is O(——=—~)

in total. Similarly, computation cost of encoding [v~v§t)]i = [v(e;)]; from @) is O(dN (K +T)J).

Computation cost of client ¢ to compute )NC;F X;, the dominant part of local computation f (ii, v~v§t))
in (@), is O(deQ). We summarize the asymptotic complexity of each client in Table

When we set N = 3(K +T — 1)+ 1 and K = O(N) (Case 2), increasing /N has two major impacts
on the training time: 1) reducing the computation per client by choosing a larger K, 2) increasing
the encoding time. In this case, as m is typically much larger than other parameters, dominate
terms in communication, computation, and encoding cost are O(md), O(md?/N) and O(mdN),
respectively. For small datasets, i.e., when the computation load at each worker is very small, the
gain from increasing the number of workers beyond a certain point may be minimal and system may
saturate, as encoding may dominate the computation. This is the reason that a higher amount of
speedup of training time is achieved as the dimension of the dataset becomes larger.

6 Conclusions

We considered a collaborative learning scenario in which multiple data-owners jointly train a logistic
regression model without revealing their individual datasets to the other parties. To the best of our
knowledge, even for the simple logistic regression, COPML is the first fully-decentralized training
framework to scale beyond 3-4 parties while achieving information-theoretic privacy. Extending
COPML to more complicated (deeper) models is a very interesting future direction. An MPC-friendly
(i.e., polynomial) activation function is proposed in [28]] which approximates the softmax and shows
that the accuracy of the resulting models is very close to those trained using the original functions.
We expect to achieve a similar performance gain even in those setups, since COPML can similarly be
leveraged to efficiently parallelize the MPC computations.



Broader Impact

Our framework has the societal benefit of protecting user privacy in collaborative machine learning
applications, where multiple data-owners can jointly train machine learning models without revealing
information about their individual datasets to the other parties, even if some parties collude with
each other. Collaboration can significantly improve the accuracy of trained machine learning models,
compared to training over individual datasets only. This is especially important in applications
where data labelling is costly and can take a long time, such as data collected and labeled in medical
fields. For instance, by using our framework, multiple medical institutions can collaborate to train a
logistic regression model jointly, without revealing the privacy of their datasets to the other parties,
which may contain sensitive patient healthcare records or genetic information. Our framework
can scale to a significantly larger number of users compared to the benchmark protocols, and can
be applied to any field in which the datasets contain sensitive information, such as healthcare
records, financial transactions, or geolocation data. In such applications, protecting the privacy
of sensitive information is critical and failure to do so can result in serious societal, ethical, and
legal consequences. Our framework can provide both application developers and users with positive
societal consequences, application developers can provide better user experience with better models
as the volume and diversity of data will be increased greatly, and at the same time, users will have
their sensitive information kept private. Another benefit of our framework is that it provides strong
privacy guarantees that is independent from the computational power of the adversaries. Therefore,
our framework keeps the sensitive user information safe even if adversaries gain quantum computing
capabilities in the future.

A potential limitation of our framework is that our current training framework is bound to polynomial
operations. In order to compute functions that are not polynomials, such as the sigmoid function,
we utilize a polynomial approximation. This can pose a challenge in the future for applying our
framework to deep neural network models, as the approximation error may add up at each layer. In
such scenarios, one may need to develop additional techniques to better handle the non-linearities
and approximation errors.
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A Supplementary Materials

A.1 Details of the Quantization Phase

For quantizing its dataset X;, client j € [N]| employs a scalar quantization function
¢ (Round(2'= - X;)), where the rounding operation

Round(x) = { Ed if x—|z] <05

|| +1 otherwise (3)

is applied element-wise to the elements = of matrix X; and [, is an integer parameter to control

the quantization loss. |xz] is the largest integer less than or equal to x, and function ¢ : Z — T,

is a mapping defined to represent a negative integer in the finite field by using two’s complement
representation,

T ifx>0

(b(x)_{p—kx ifx <0 (14)

To avoid a wrap-around which may lead to an overflow error, prime p should be large enough,
p > 2kt max{|x|} + 1. Its value also depends on the bitwidth of the machine as well as the
dimension of the dataset. For example, in a 64-bit implementation with the CIFAR-10 dataset whose
dimension is d = 3072, we select p = 226 — 5, which is the largest prime needed to avoid an
overflow on intermediate multiplications. In particular, in order to speed up the running time of
matrix-matrix multiplication, we do a modular operation after the inner product of vectors instead of
doing a modular operation per product of each element. To avoid an overflow on this, p should be
smaller than a threshold given by d(p — 1)? < 264 — 1. For ease of exposition, throughout the paper,
X = [X],..., X" refers to the quantized dataset.

A.2 Proof of Theorem/T]

First, we show that the minimum number of clients needed for our decoding operation to be successful,
i.e., the recovery threshold of COPML, is equal to (2r+1)(K +T — 1)+ 1. To do so, we demonstrate
in the following that the decoding process will be successful as long as N > (2r+1)(K+T7 —1)+1.
As described in Section 3] given the polynomial approximation of the sigmoid function in (), the
degree of h(z) in @) is at most (2r + 1)(K 4+ T — 1). The decoding process uses the computations
from the clients as evaluation points h(c; ) to interpolate the polynomial h(z). If at least deg(h(z))+1
evaluation results of h(«;) are available, then, all of the coefficients of h(z) can be evaluated. After
h(z) is recovered, the sub-gradient X, §(X; x w(®*)) can be decoded by computing h(3;) fori € [K],
from which the gradient X' g(X x W(t)) from (TI) can be computed. Hence, the recovery threshold
of COPMLis (2r +1)(K+T —1)+1,aslongas N > (2r +1)(K + T — 1) + 1, the protocol can
correctly decode the gradient using the local evaluations of the clients, and the decoding process will
be successful. Since the decoding operations are performed using a secure MPC protocol, throughout
the decoding process, the clients only learn a secret share of the gradient and not its actual value.
Next, we consider the update equation in (6) and prove its convergence to w*. As described in
Section [3] after decoding the gradient, the clients carry out a secure truncation protocol to multiply
X (§(X x w(®)) — y) with parameter L to update the model as in (€). The update equation from

m

(6) can then be represented by
1
wit ) = wl (=X T (§(X x w)) —y) +n®). (15)
m
= w—np® (16)

where n*) represents the quantization noise introduced by the secure multi-party truncation protocol

[6], and p(*) £ %XT(Q(X x w®)) —y) +n®. From [6], n*) has zero mean and bounded variance,

ie,E,on®] =0and E o [|n®|3] < % £ o2 where || - ||2 is the I norm and k; is the

truncation parameter described in Section 3]

Next, we show that p(*) is an unbiased estimator of the true gradient, VC(w(®)) = %XT(g(X X
=0, we

w(®)) — y), and its variance is bounded by o2 with sufficiently large r. From E, ) [n*)]
obtain

Eno [p?] = VO(w!) = %XT (G(X x W) — (X x w")). (17)
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From the Weierstrass approximation theorem [5]], for any e > 0, there exists a polynomial that
approximates the sigmoid arbitrarily well, i.e., |§(x) — g(z)| < € for all x in the constrained

interval. Hence, as there exists a polynomial making the norm of (T7) arbitrarily small, E, [p(Y)] =
VC(w®) and En [[[pY — Epo [PD][3] = Eqeo [[In® ]3] < 0.

Next, we consider the update equation in and prove its convergence to w*. From the L-Lipschitz
continuity of VC(w) (Theorem 2.1.5 of [29]]), we have

CwtHD)y <C(w)+(VC(w?), w(t“)—w(t))—kgﬂ w(tt _w(® H2

) Oy o0y L7 w2
<C(wW)—n(VC(w'"),p >+7HP I, (18)

where (, -, ) is the inner product. For a cross entropy loss C(w), the Lipschitz constant L is equal to
the largest eigenvalue of the Hessian V2C(w) for all w, and is given by L = %||X||3. By taking the

expectation with respect to the quantization noise n*) on both sides in (T8), we have

2
B [C(w( )] < Ow®) | VO )2 4 (| 7C(w ) 7 4+ %) (19)
L L 2 2
< O(w) = n(1 = F) VO ? + =57
2
< C(w®) = 2| VO(w)|?+ 2 20)
U no”
< O(w*)+(VC(w®), wt) —w*) — §|| VC(W(t))HQ—I—T (21
< O(W*) + (B [PV, W) = w*) = TE, 0 [p0)? + no? (22)
= C(w") + 10 + Eqo [ (P, w = w*) = T [p®) ]

1
=C(w*) +no? + %(II wlt) —w* |2 — By | wHD —w*)|?) (23)

where (T9) and 22) hold since E, ) [p®] = VO(w®) and E,, [||p® — VC(w®) 3] < o2, 20)
follows from Ly < 1, (ZI) follows from the convexity of C, and (23) follows from p®) =
_l(w(t+1) —wt),

n

By taking the expectation on both sides in (23) with respect to the joint distribution of all random
variables n(9), ..., n(/~1 where .J denotes the total number of iterations, we have

E[C(w!T)] - O(w*) < Qi(En wi) —w* |2 —E| w ) —w*)|?) + 902 (24)
n

Summing both sides of the inequality in 24) for¢ = 0,...,J — 1, we find that,
J-1 (0) _ ok |12
> (Elcw )] -c(w) < W= =W 24 o
2n
t=0
Finally, since C' is convex, we observe that,

J J—1
s[o(; o w)] o) < 5 3 (Blow )] o)
t=0 t=0
W(O)_W* 2
O

which completes the proof of convergence.

A.3 Details of the Multi-Party Computation (MPC) Implementation

We consider two well-known MPC protocols, the notable BGW protocol from [4]], and the more
recent, efficient MPC protocol from [3}[12]]. Both protocols allow the computation of any polynomial
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function in a privacy-preserving manner by untrusted parties. Computations are carried out over the
secret shares, and at the end, parties only learn a secret share of the actual result. Any collusions
between upto T = L%J out of N parties do not reveal information (in an information-theoretic
sense) about the input variables. The latter protocol is more efficient in terms of the communication
cost between the parties, which scales linearly with respect to the number of parties, whereas for the
former protocol this cost is quadratic. As a trade-off, it requires a considerable amount of offline
computations and higher storage cost for creating and secret sharing the random variables used in the

protocol.

For creating secret shares, we utilize Shamir’s T-out-of-/V secret sharing [33]]. This scheme embeds
a secret a in a degree T polynomial h(§) = a + vy, ..., vy where v;, i € [T)] are uniformly
random variables. Client i € [IN] then receives a secret share of a, denoted by h(i) = [a];. This
keeps a private against any collusions between up to any 7" parties. The specific computations are
then carried out as follows.

Addition. In order to perform a secure addition a + b, clients locally add their secret shares
[a); + [b];. The resulting value is a secret share of the original summation a + b. This step requires
no communication.

Multiplication-by-a-constant. For performing a secure multiplication ac where c is a publicly-
known constant, clients locally multiply their secret share [a]; with c. The resulting value is a secret
share of the desired multiplication ac. This step requires no communication.

Multiplication. For performing a secure multiplication ab, the two protocols differ in their execution.
In the BGW protocol, each client initially multiplies its secret shares [al;, [b]; locally to obtain [a]; [b];.
The clients will then be holding a secret share of ab, however, the corresponding polynomial now
has degree 27. This may in turn cause the degree of the polynomial to increase excessively as more
multiplication operations are evaluated. To alleviate this problem, in the next phase, clients carry
out a degree reduction step to create new shares corresponding to a polynomial of degree T'. The
communication overhead of this protocol is O(N?).

The protocol from [3]], on the other hand, leverages offline computations to speed up the communica-
tion phase. In particular, a random variable p is created offline and secret shared with the clients twice
using two random polynomials with degrees 1" and 27, respectively. The secret shares corresponding
to the degree T' polynomial are denoted by [p]r;, whereas the secret shares for the degree 27" polyno-
mial are denoted by [p]2r,; for clients ¢ € [N]. In the online phase, client i € [/V] locally computes
the multiplication [a];[b];, after which each client will be holding a secret share of the multiplication
ab. The resulting polynomial has degree 27". Then, each client locally computes [a];[b]; — [p]2r.i»
which corresponds to a secret share of ab — p embedded in a degree 27" polynomial. Clients then
broadcast their individual computations to others, after which each client computes ab — p. Note that
the privacy of the computation ab is still protected since clients do not know the actual value of ab,
but instead its masked version ab — p. Then, each client locally computes ab — p + [p]7,;. As aresult,
variable p cancels out, and clients obtain a secret share of the multiplication ab embedded in a degree
T polynomial. This protocol requires only O(N) broadcasts and therefore is more efficient than the
previous algorithm. On the other hand, it requires an offline computation phase and higher storage
overhead. For the details, we refer to [3} 2].

Remark 3. The secure MPC computations during the encoding, decoding, and model update phases
of COPML only use addition and multiplication-by-a-constant operations, instead of the expensive
multiplication operation, as {c; };c[n] and { By } xe[x+1) are publicly known constants for all clients.

A.4 Details of the Optimized Baseline Protocols

In a naive implementation of our multi-client problem setting, both baseline protocols would utilize
Shamir’s secret sharing scheme where the quantized dataset X = [X[,..., X \]T is secret shared
with N clients. To do so, both baselines would follow the same secret sharing process as in COPML,
where client j € [N] creates a degree 7' random polynomial ;(z) = X, +2Rj1 + ... + 2T Rjr
where Rj; for i € [T are i.i.d. uniformly distributed random matrices while selecting 7" = [ ¥ ].
By selecting [V distinct evaluation points Ay, ..., Ay from [, client j would generate and send
[X,]i = h;(\;) toclient i € [N]. As aresult, client ¢ € [N] would be assigned a secret share of the

entire dataset X, i.e, [X]; = [[X4]/,...,[Xn]]] " Client i would also obtain a secret share of the
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labels, [y];, and a secret share of the initial model, [w(®)];, where y = [y ,...,yA]" and w(©®) is
a randomly initialized model. Then, the clients would compute the gradient and update the model
from (/) within a secure MPC protocol. This guarantees privacy against L%j colluding workers,
but requires a computation load at each worker that is as large as processing the whole dataset at a

single worker, leading to slow training.

Hence, in order to provide a fair comparison with COPML, we optimize (speed up) the baseline
protocols by partitioning the clients into subgroups of size 27" + 1. Clients communicate a secret
share of their own datasets with the other clients in the same subgroup, instead of secret sharing it
with the entire set of clients. Each client in subgroup ¢ receives a secret share of a partitioned dataset

X,; € B¢ *" where X = [X] ---X /] and G is the number of subgroups. In other words, client
in subgroup 7 obtains a secret share [X;],. Then, subgroup ¢ € [G] computes the sub-gradient over
the partitioned dataset, X,;, within a secure MPC protocol. To provide the same privacy threshold
T = L%J as Case 2 of COPML in Section we set G = 3. This significantly reduces the total
training time of the two baseline protocols (compared to the naive MPC implementation where the
computation load at each client would be as high as training centrally), as the total amount of data

processed at each client is equal to one third of the size of the entire dataset X.

A.5 Algorithms

The overall procedure of COPML protocol is given in Algorithm [I]
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Algorithm 1 COPML

input Dataset (X,y) = (X1,y1),--.,(Xn,yn)) distributed over N clients.
output Model parameters w(),

1: forclientj =1,..., N do

2:  Secret share the individual dataset (X, y;) with clients ¢ € [N].

3: end for

4: Within a secure MPC protocol, initialize the model w(® randomly and secret share with clients i € [N].

// Client i receives a secret share [w'®]; of w'®).
5: Encode the dataset within a secure MPC protocol, using the secret shares [X;]; for j € [N], ¢ € [N].

// After this step, client i holds a secret share [X]; of each encoded dataset X for j € [N].
6: forclienti =1,..., N do B
Gather the secret shares [X;]; from clients 5 € [N].
8:  Recover the encoded dataset X; from the secret shares {[X;];};e[ni-
// At the end of this step, client © obtains the encoded dataset X
9: end for
10: Compute X T y within a secure MPC protocol using the secret shares [X;]; and [y;]; for j € [N], i € [N].
// At the end of this step, client © holds a secret share [XT vl of XTy.
11: for iterationt =0,...,J —1do
12:  Encode the model w'*) in a secure MPC protocol using the secret shares [w(t)]i.
// After this step, client i holds a secret share [V~v§-t>]¢ of the encoded model V~V§-t) forj € [N].
13:  forclienti =1,...,N do

14: Gather the secret shares [‘A’(’Z(-t)]j from clients j € [N].
15: Recover the encoded model w'") from the secret shares {[w'"];} FEIN]-
// At the end of this step, client © obtains the encoded model vat).
16: Locally compute f (X, w'") from (7) and secret share the result with clients j € [N].
// Client i sends a secret share [f (X, VNVEt))]]- of f(Xs, v~v£t>) to client j.
17 end for
18: forclienti =1,..., N do
19: Locally computes [f (X, w"))]; for k € [K] from (T0).
// After this step, client i knows a secret share [ (X, w™)]; of f(Xy, w®) for k € [K].
20: Locally aggregate the secret shares {[f(Xg, w)];}rex to compute [XT (X x w®)]; £

Zkg[K] [f (X, W(t))]i-
// At the end of this step, client © now has a secret share [XT g(X x w<t))}i of XT g(X % w(t)) =
ZkG[K] S (X, W<t))-
21: Locally compute [X T (§(X x w®) —y)]; 2 [XT §(X x w)]; — [XT yl,.
// Each client now has a secret share [X " (§(X x w®) —y)]; of X" (§(X x wP) —y).
22:  end for
23:  Update the model according to (6) within a secure MPC protocol using the secret shares XT(5(X x
w®) — y)]; and [w®]; for i € [N], and by carrying out the secure truncation operation.
// At the end of this step, client i holds a secret share of the updated model [w(t"'l)}i.
// Secure truncation is carried out jointly as it requires communication between the clients.
24: end for
25: forclientj =1,..., N do
26:  Collect the secret shares [w(”)]; from clients i € [N] and recover the final model w”).
27: end for

18
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